41 resultados para Progressive Ankylosis

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degradation of immunoglobulins is an effective strategy of bacteria to evade the immune system. We have tested whether human IgG is a substrate for gingipain K of Porphyromonas gingivalis and found that the enzyme can hydrolyze subclass 1 and 3 of human IgG. The heavy chain of IgG(1) was cleaved at a single site within the hinge region, generating Fab and Fc fragments. IgG(3) was also cleaved within the heavy chain, but at several sites around the CH2 region. Investigation of the enzyme kinetics of IgG proteolysis by gingipain K, using FPLC- and isothermal titration calorimetry-based assays followed by Hill plots, revealed non-Michaelis-Menten kinetics involving a mechanism of positive cooperativity. In ex vivo studies, it was shown that gingipain K retained its IgG hydrolyzing activity in human plasma despite the high content of natural protease inhibitors; that IgG(1) cleavage products were detected in gingival crevicular fluid samples from patients with severe periodontitis; and that gingipain K treatment of serum samples from patients with high antibody titers against P. gingivalis significantly hindered opsonin-dependent phagocytosis of clinical isolates of P. gingivalis by neutrophils. Altogether, these findings underline a biological function of gingipain K as an IgG protease of pathophysiological importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To report refractive, topographic, aberrometric, and tomographic outcomes 24 months after corneal cross-linking (CXL) in patients up to 18 years of age with progressive keratoconus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a sporadic case of chronic progressive external ophthalmoplegia associated with ragged red fibers. The patient presented with enlarged mitochondria with deranged internal architecture and crystalline inclusions. Biochemical studies showed reduced activities of complex I, III and IV in skeletal muscle. Molecular genetic analysis of all mitochondrial tRNAs revealed a G to A transition at nt 4308; the G is a highly conserved nucleotide that participates in a GC base-pair in the T-stem of mammalian mitochondrial tRNA(Ile). The mutation was detected at a high level (approx. 50%) in muscle but not in blood. The mutation co-segregated with the phenotype, as the mutation was absent from blood and muscle in the patient's healthy mother. Functional characterization of the mutation revealed a six-fold reduced rate of tRNA(Ile) precursor 3' end maturation in vitro by tRNAse Z. Furthermore, the mutated tRNA(Ile) displays local structural differences from wild-type. These results suggest that structural perturbations reduce efficiency of tRNA(Ile) precursor 3' end processing and contribute to the molecular pathomechanism of this mutation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep-wake disturbances are frequent in patients with Parkinson's disease, but prospective controlled electrophysiological studies of sleep in those patients are surprisingly sparse, and the pathophysiology of sleep-wake disturbances in Parkinson's disease remains largely elusive. In particular, the impact of impaired dopaminergic and hypocretin (orexin) signalling on sleep and wakefulness in Parkinson's disease is still unknown. We performed a prospective, controlled electrophysiological study in patients with early and advanced Parkinson's disease, e.g. in subjects with presumably different levels of dopamine and hypocretin cell loss. We compared sleep laboratory tests and cerebrospinal fluid levels with hypocretin-deficient patients with narcolepsy with cataplexy, and with matched controls. Nocturnal sleep efficiency was most decreased in advanced Parkinson patients, and still lower in early Parkinson patients than in narcolepsy subjects. Excessive daytime sleepiness was most severe in narcolepsy patients. In Parkinson patients, objective sleepiness correlated with decrease of cerebrospinal fluid hypocretin levels, and repeated hypocretin measurements in two Parkinson patients revealed a decrease of levels over years. This suggests that dopamine and hypocretin deficiency differentially affect sleep and wakefulness in Parkinson's disease. Poorer sleep quality is linked to dopamine deficiency and other disease-related factors. Despite hypocretin cell loss in Parkinson's disease being only partial, disturbed hypocretin signalling is likely to contribute to excessive daytime sleepiness in Parkinson patients.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the plakoglobin (JUP) gene have been identified in arrhythmogenic right ventricular cardiomyopathy (ARVC) patients. However, the mechanisms underlying plakoglobin dysfunction involved in the pathogenesis of ARVC remain poorly understood. Plakoglobin is a component of both desmosomes and adherens junctions located at the intercalated disc (ICD) of cardiomyocytes, where it functions to link cadherins to the cytoskeleton. In addition, plakoglobin functions as a signaling protein via its ability to modulate the Wnt/beta-catenin signaling pathway. To investigate the role of plakoglobin in ARVC, we generated an inducible cardiorestricted knockout (CKO) of the plakoglobin gene in mice. Plakoglobin CKO mice exhibited progressive loss of cardiac myocytes, extensive inflammatory infiltration, fibrous tissue replacement, and cardiac dysfunction similar to those of ARVC patients. Desmosomal proteins from the ICD were decreased, consistent with altered desmosome ultrastructure in plakoglobin CKO hearts. Despite gap junction remodeling, plakoglobin CKO hearts were refractory to induced arrhythmias. Ablation of plakoglobin caused increase beta-catenin stabilization associated with activated AKT and inhibition of glycogen synthase kinase 3beta. Finally, beta-catenin/TCF transcriptional activity may contribute to the cardiac hypertrophy response in plakoglobin CKO mice. This novel model of ARVC demonstrates for the first time how plakoglobin affects beta-catenin activity in the heart and its implications for disease pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous disorders characterised by myoclonus, epilepsy, and neurological deterioration. This study aimed to identify the underlying gene(s) in childhood onset PME patients with unknown molecular genetic background.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In progressive immunoglobulin A nephropathy (IgAN), intravenous immunoglobulin (IVIg) treatment has been used to delay disease progression, but the long-term efficacy is largely unknown. We report the clinical outcomes after IVIg therapy in six male patients with progressive IgAN [median glomerular filtration rate (GFR) 31 ml/min per 1.73 m(2)] followed for a median observation period of 8 years. In this single-arm, non-randomized study, IVIg was given monthly at a dose of 2 g/kg body weight for 6 months. The course of renal function was assessed by linear regression analysis of GFR and proteinuria, and was compared to eight patients with IgAN (median GFR 29 ml/min per 1.73 m(2)) without IVIg as a contemporaneous control group. IgAN disease progression was delayed after IVIg therapy on average for 3 years. The mean loss of renal function decreased from -1.05 ml/min per month to -0.15 ml/min per month (P = 0.024) and proteinuria decreased from 2.4 g/l to 1.0 g/l (P = 0.015). The primary end-point (GFR < 10 ml/min or relapse) occurred 5.2 years (median; range 0.4-8.8) after the first IVIg pulse, and after 1.3 years (median; range 0.8-2.4) in the control group (P = 0.043). In Kaplan-Meier analysis, the median renal survival time with IVIg was prolonged by 3.5 years (IVIg 4.7 years versus control 1.2 years; P = 0.006). IVIg pulse therapy may be considered as a treatment option to reduce the loss of renal function and improve proteinuria in patients with progressive IgAN.