69 resultados para Programmable logic controller
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patient's information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions. The predictions are fed to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. An algorithm based on fuzzy logic has been developed for the on-line adaptation of the NMPC control parameters. The IIAS has been in silico evaluated using an appropriate simulation environment (UVa T1DM simulator). The IIAS was able to handle various meal profiles, fasting conditions, interpatient variability, intraday variation in physiological parameters, and errors in meal amount estimations.
Resumo:
Occupational diisocyanate-induced extrinsic allergic alveolitis (EAA) is a rare and probably underestimated diagnosis. Two acute occupational EAA cases have been described in this context, but neither of them concerned hexamethylene diisocyanate (HDI) exposure.
Resumo:
A novel adaptive approach for glucose control in individuals with type 1 diabetes under sensor-augmented pump therapy is proposed. The controller, is based on Actor-Critic (AC) learning and is inspired by the principles of reinforcement learning and optimal control theory. The main characteristics of the proposed controller are (i) simultaneous adjustment of both the insulin basal rate and the bolus dose, (ii) initialization based on clinical procedures, and (iii) real-time personalization. The effectiveness of the proposed algorithm in terms of glycemic control has been investigated in silico in adults, adolescents and children under open-loop and closed-loop approaches, using announced meals with uncertainties in the order of ±25% in the estimation of carbohydrates. The results show that glucose regulation is efficient in all three groups of patients, even with uncertainties in the level of carbohydrates in the meal. The percentages in the A+B zones of the Control Variability Grid Analysis (CVGA) were 100% for adults, and 93% for both adolescents and children. The AC based controller seems to be a promising approach for the automatic adjustment of insulin infusion in order to improve glycemic control. After optimization of the algorithm, the controller will be tested in a clinical trial.