61 resultados para Progenitor-cell Identity
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Individual adaptation of processed patient's blood volume (PBV) should reduce number and/or duration of autologous peripheral blood progenitor cell (PBPC) collections. STUDY DESIGN AND METHODS: The durations of leukapheresis procedures were adapted by means of an interim analysis of harvested CD34+ cells to obtain the intended yield of CD34+ within as few and/or short as possible leukapheresis procedures. Absolute efficiency (AE; CD34+/kg body weight) and relative efficiency (RE; total CD34+ yield of single apheresis/total number of preapheresis CD34+) were calculated, assuming an intraapheresis recruitment if RE was greater than 1, and a yield prediction models for adults was generated. RESULTS: A total of 196 adults required a total of 266 PBPC collections. The median AE was 7.99 x 10(6), and the median RE was 1.76. The prediction model for AE showed a satisfactory predictive value for preapheresis CD34+ only. The prediction model for RE also showed a low predictive value (R2 = 0.36). Twenty-eight children underwent 44 PBPC collections. The median AE was 12.13 x 10(6), and the median RE was 1.62. Major complications comprised bleeding episodes related to central venous catheters (n = 4) and severe thrombocytopenia of less than 10 x 10(9) per L (n = 16). CONCLUSION: A CD34+ interim analysis is a suitable tool for individual adaptation of the duration of leukapheresis. During leukapheresis, a substantial recruitment of CD34+ was observed, resulting in a RE of greater than 1 in more than 75 percent of patients. The upper limit of processed PBV showing an intraapheresis CD34+ recruitment is higher than in a standard large-volume leukapheresis. Therefore, a reduction of individually needed PBPC collections by means of a further escalation of the processed PBV seems possible.
Resumo:
BACKGROUND AND OBJECTIVES. The presence of circulating hematopoietic progenitor cells in patients with myeloproliferative diseases (MPD) has been described. However, the exact nature of such progenitor cells has not been specified until now. The aim of this work was to investigate the presence of endothelial precursor cells in the blood of patients with MPD and to assess the role of the endothelial cell lineage in the pathophysiology of this disease. DESIGN AND METHODS. Endothelial progenitor cell marker expression (CD34, prominin (CD133), kinase insert domain receptor (KDR) or vascular endothelial growth factor receptor 2 (VEGFR2), and von Willebrand factor) was assessed in the blood of 53 patients with MPD by quantitative polymerase chain reaction. Clonogenic stem cell assays were performed with progenitor cells and monocytes to assess differentiation towards the endothelial cell lineage. The patients' were divided according to whether they had essential thrombocythemia (ET, n=17), polycythemia vera (PV, n=21) or chronic idiopathic myelofibrosis (CIMF, n=15) and their data compared with data from normal controls (n=16) and patients with secondary thrombo- or erythrocytosis (n=17). RESULTS. Trafficking of CD34-positive cells was increased above the physiological level in 4/17 patients with ET, 5/21 patients with PV and 13/15 patients with CIMF. A subset of patients with CIMF co-expressed the markers CD34, prominin (CD133) and KDR, suggesting the presence of endothelial precursors among the circulating progenitor cells. Clonogenic stem cell assays confirmed differentiation towards both the hematopoietic and the endothelial cell lineage in 5/10 patients with CIMF. Furthermore, the molecular markers trisomy 8 and JAK2 V617F were found in the grown endothelial cells of patients positive for trisomy 8 or JAK2 V617F in the peripheral blood, confirming the common clonal origin of both hematopoietic and endothelial cell lineages. INTERPRETATION AND CONCLUSIONS. Endothelial precursor cells are increased in the blood of a subset of patients with CIMF, and peripheral endothelial cells bear the same molecular markers as hematopoietic cells, suggesting a primary role of pathological endothelial cells in this disease.
Resumo:
BACKGROUND: Oxidized low density lipoprotein (oxLDL) has been shown to induce apoptosis and senescence of endothelial progenitor cells (EPC). In the present study, we hypothesized that even sub-apoptotic concentrations of oxLDL impair the angiogenic potential of EPC and investigated if this effect is mediated by affecting adhesion and incorporation. METHODS: A co-culture system of human microvascular endothelial cells and EPC was used to study the effect of sub-apoptotic concentrations of native (nLDL) and oxLDL on cell-cell interaction. The expression and the functional role of angiogenic adhesion molecules and integrins was monitored by FACS and neutralizing assay, respectively. RESULTS: We observed an inhibition of tube formation and impairment of EPC integration into the vascular network of mature endothelial cells by oxLDL. In contrast, nLDL did not affect angiogenic properties of EPC. Incubation of EPC with sub-apoptotic oxLDL concentrations significantly decreased E-selectin and integrin alpha(v)beta(5) expression (37.6% positive events vs. 71.5% and 24.3% vs. 49.9% compared to control culture media without oxLDL). Interestingly, expression of alpha(v)beta(3), VE-cadherin and CD31 remained unchanged. Blocking of E-selectin and integrin alpha(v)beta(5) by neutralizing antibody effectively inhibited adhesion of EPC to differentiated endothelial cells (56.5% and 41.9% of control; p<0.001). CONCLUSION: In conclusion, oxidative alteration of LDL impairs angiogenic properties of EPC at sub-apoptotic levels by downregulation of E-selectin and integrin alpha(v)beta(5), both substantial mediators of EPC-endothelial cell interaction.
Resumo:
OBJECTIVES: We investigated whether qualitative or quantitative alterations of the endothelial progenitor cell (EPC) pool predict age-related structural vessel wall changes. BACKGROUND: We have previously shown that age-related endothelial dysfunction is accompanied by qualitative rather than quantitative changes of EPCs. Animal studies suggest that impaired EPC functions lead to accelerated arterial intimal thickening. METHODS: Intima-media thickness (IMT) was measured in the common carotid artery in our previously published groups of younger (25 +/- 1 years, n = 20) and older (61 +/- 2 years, n = 20) healthy non-smoking volunteers without arterial hypertension, hypercholesterolemia, and diabetes mellitus. Endothelial progenitor cells (EPCs, KDR(+)/CD34(+) and KDR(+)/CD133(+)) were counted in peripheral blood using flow cytometry. In ex vivo expanded EPCs, the function was determined as chemotaxis to VEGF, proliferation, and survival. RESULTS: We observed thicker IMT in older as compared to younger subjects (0.68 +/- 0.03 mm Vs. 0.48 +/- 0.02 mm, P < 0.001). Importantly, there were significant inverse univariate correlations between IMT, EPC chemotaxis, and survival (r = -0.466 P < 0.05; r = -0.463, P < 0.01). No correlation was observed with numbers of circulating EPCs. Multivariate regression analysis revealed that age, mean arterial pressure and migration of EPCs were independent predictors of IMT (R (2 )= 0.58). CONCLUSION: Impaired EPC function may lead to accelerated vascular remodeling due to chronic impairment of endothelial maintenance.
Resumo:
INTRODUCTION: Recent findings suggest that articular cartilage contains mesenchymal progenitor cells. The aim of this study was to examine the distribution of stem cell markers (Notch-1, Stro-1 and VCAM-1) and of molecules that modulate progenitor differentiation (Notch-1 and Sox9) in normal adult human articular cartilage and in osteoarthritis (OA) cartilage. METHODS: Expression of the markers was analyzed by immunohistochemistry (IHC) and flow cytometry. Hoechst 33342 dye was used to identify and sort the cartilage side population (SP). Multilineage differentiation assays including chondrogenesis, osteogenesis and adipogenesis were performed on SP and non-SP (NSP) cells. RESULTS: A surprisingly high number (>45%) of cells were positive for Notch-1, Stro-1 and VCAM-1 throughout normal cartilage. Expression of these markers was higher in the superficial zone (SZ) of normal cartilage as compared to the middle zone (MZ) and deep zone (DZ). Non-fibrillated OA cartilage SZ showed reduced Notch-1 and Sox9 staining frequency, while Notch-1, Stro-1 and VCAM-1 positive cells were increased in the MZ. Most cells in OA clusters were positive for each molecule tested. The frequency of SP cells in cartilage was 0.14 +/- 0.05% and no difference was found between normal and OA. SP cells displayed chondrogenic and osteogenic but not adipogenic differentiation potential. CONCLUSIONS: These results show a surprisingly high number of cells that express putative progenitor cell markers in human cartilage. In contrast, the percentage of SP cells is much lower and within the range of expected stem cell frequency. Thus, markers such as Notch-1, Stro-1 or VCAM-1 may not be useful to identify progenitors in cartilage. Instead, their increased expression in OA cartilage implicates involvement in the abnormal cell activation and differentiation process characteristic of OA.
Resumo:
BACKGROUND: Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy. METHODOLOGY/PRINCIPAL FINDINGS: EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2+/-2.9% and 83.7+/-3.0% vs. 53.5+/-2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62+/-0.03 and 1.68+/-0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6+/-0.3 and 8.1+/-0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7+/-44.1 vs. 340.0+/-29.1 CD34(+)/CD45(-) cells/1x10(5) mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9+/-0.7 vs. 2.6+/-0.4 CD34(+) cells/HPF, P<0.001) 3 days after the last injection. CONCLUSIONS/SIGNIFICANCE: Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.
Resumo:
We have previously shown that EphB4 and ephrin-B2 are differentially expressed in the mammary gland and that their deregulated expression in the mammary epithelium of transgenic mice leads to perturbations of the mammary parenchyma and vasculature. In addition, overexpression of EphB4 and expression of a truncated ephrin-B2 mutant, capable of receptor stimulation but incapable of reverse signalling, confers a metastasising phenotype on NeuT initiated mouse mammary tumours. We have taken advantage of this transgenic tumour model to compare stem cell characteristics between the non-metastasising and metastasising mammary tumours. We analysed the expression of the proliferation attenuating p21(waf) gene, which was significantly increased in the metastasising tumours. Moreover, we compared the expression of CK-19, Sca-1, CD24 and CD49f as markers for progenitor cells exhibiting a decreasing differentiation grade. Sca-1 expressing cells were the earliest progenitors detected in the non-metastasising NeuT induced tumours. The metastasising NeuT/EphB4 tumours were enriched in CD24 expressing cells, whereas the metastasising NeuT/truncated ephrin-B2 tumours contained in addition significant amounts of CD49f expressing cells. The same cell populations were also enriched in mammary glands of single transgenic MMTV-EphB4 and MMTV-truncated ephrin-B2 females indicating that deregulated EphB4-ephrin-B2 signalling interferes with the homeostasis of the stem/progenitor cell pool before tumour formation is initiated. Since the same cell populations are enriched in the normal tissue, primary mammary tumours and metastases we conclude that these progenitor cells were the origin of tumour formation and that this change in the tumour origin has led to the acquisition of the metastatic tumour phenotype.
Resumo:
Cancer most probably originates from stem/progenitor cells and exhibits a similar cell hierarchy as normal tissues. Moreover, there is growing evidence that only the stem cells are capable of metastasis formation. We have previously shown that overexpression of a dominant negative ephrin-B2 mutant interferes with mammary gland differentiation and confers a metastatic phenotype to NeuT-induced mammary tumors with an increase in cells with stem/progenitor characteristics. To investigate the role of ephrin-B2 in the control of the mammary stem cell niche, we analyzed the mammary stem and progenitor cell populations in transgenic mice overexpressing the mutant ephrin-B2. Quantification by FACS analysis revealed a significant increase of cells in the basal/alveolar cell-, the bi-potent progenitor- and the stem cell-enriched fractions. Moreover, the supposed precursors of estrogen receptor-positive cells were elevated in the stem cell-enriched fraction. In contrast, the epithelium from transgenic mice overexpressing the native ephrin-B2 gene showed an augmentation of the luminal cell- and the bi-potent progenitor-enriched fractions. Repopulation assays revealed that the epithelial cells of truncated ephrin-B2 transgenic epithelial cells have a higher regeneration capacity than those of controls and of native ephrin-B2 transgenic mice, confirming the augmentation of stem cells. Morphologically, these outgrowths exhibited impaired basal/luminal compartmentalization and epithelial polarization. These results demonstrate that deregulated ephrin-B2 expression interferes with the regulation of the stem cell niche and leads to a shift of the differentiation pathway and may thereby contribute to the acquisition of the metastatic phenotype long before carcinogenic growth becomes apparent.
Resumo:
Kinetic investigations in pediatric acute lymphoblastic leukemia (ALL) are based on all blast cells and, therefore, reflect the proliferative characteristics of the predominant immunophenotype of leukemic cells. Nothing is known about proliferation of immunologically defined rare subpopulations of leukemic cells. In this study, mononuclear cells from the bone marrow of 15 children with untreated CD19 B-cell precursor ALL were examined for proliferative features according to the immunophenotype. After exclusion of highly proliferating residual normal hematopoietic cells, ∼ 3% of blast cells were CD19 and showed a low percentage of cells in S-phase assessed by the bromodeoxyuridine labeling index (BrdU-LI): median BrdU-LI, 0.19% [interquartile range (IQR), 0.15-0.40%]. In contrast, a median BrdU-LI of 7.2% (IQR, 5.7-8.8%) was found for the major CD19 blast cell compartment. Staining smears of sorted CD19 cells for CD10 or CD34 revealed a small fraction of CD19CD10 or CD19CD34 blast cells. These cells were almost nonproliferating with a median BrdU-LI of <0.1% (IQR, 0-0.2%). This proliferative behavior is suggestive of a stem/progenitor cell function and, in addition, the low proliferative activity might render them more resistant to an antiproliferation-based chemotherapy. However, xenotransplantation experiments will be necessary to demonstrate a possible stem cell function.
Resumo:
BACKGROUND: Stem cells with the ability to form clonal floating colonies (spheres) were recently isolated from the neonatal murine spiral ganglion. To further examine the features of inner ear-derived neural stem cells and their derivatives, we investigated the effects of leukemia inhibitory factor (LIF), a neurokine that has been shown to promote self-renewal of other neural stem cells and to affect neural and glial cell differentiation. RESULTS: LIF-treatment led to a dose-dependent increase of the number of neurons and glial cells in cultures of sphere-derived cells. Based on the detection of developmental and progenitor cell markers that are maintained in LIF-treated cultures and the increase of cycling nestin-positive progenitors, we propose that LIF maintains a pool of neural progenitor cells. We further provide evidence that LIF increases the number of nestin-positive progenitor cells directly in a cell cycle-independent fashion, which we interpret as an acceleration of neurogenesis in sphere-derived progenitors. This effect is further enhanced by an anti-apoptotic action of LIF. Finally, LIF and the neurotrophins BDNF and NT3 additively promote survival of stem cell-derived neurons. CONCLUSION: Our results implicate LIF as a powerful tool to control neural differentiation and maintenance of stem cell-derived murine spiral ganglion neuron precursors. This finding could be relevant in cell replacement studies with animal models featuring spiral ganglion neuron degeneration. The additive effect of the combination of LIF and BDNF/NT3 on stem cell-derived neuronal survival is similar to their effect on primary spiral ganglion neurons, which puts forward spiral ganglion-derived neurospheres as an in vitro model system to study aspects of auditory neuron development.
Resumo:
BACKGROUND: Circulating progenitor cells have been implicated with maintaining vascular integrity. Low counts are found in adults with high cardiovascular risk and are associated with impaired endothelial function. It remains unknown whether psychosocial risk factors are independently related to counts of circulating progenitor cells. METHODS: We investigated a random sample of 468 adult industrial employees (mean age 41.2 years, 89% men) of Caucasian origin. Cardiovascular risk factors (blood pressure, LDL, HDL and C-reactive protein), health behavior (smoking, alcohol and physical exercise), psychological variables (effort-reward imbalance social support, negative affectivity) and interaction terms served as predictors of circulating progenitor cells (CD34+ CD31dim) as enumerated by flow-cytometry. FINDINGS: Psychosocial variables were independently associated with progenitor cell counts. The association with risk factors increased with age (explained variance in 18-36 year olds R(2)=0.17, p=0.55; age 36.1-46 R(2)=0.32, p=0.001; age>46 R(2)=0.27, p<0.001). Data revealed a shift from a larger association between behavioral and psychosocial variables and cell counts to a stronger association between biological variables and cell counts in older individuals. A significant interaction was observed between smoking and effort-reward imbalance in middle-aged subjects, those with both risk factors present had lower cell counts. In older employees, the interaction between biological risk factors and smoking was related to lower cell counts. INTERPRETATION: In working middle-aged and older men, psychosocial risk factors were related to circulating counts of progenitor cells. Smoking interacted negatively with psychosocial risk factors (middle-aged men) or with biological risk factors (older employees).
Resumo:
Postnatally, the mammary gland undergoes continuous morphogenesis and thereby is especially prone to malignant transformation. Thus, the maintenance of the epithelium depends on a tight control of stem cell recruitment. We have previously shown that epithelial overexpression of the EphB4 receptor results in defective mammary epithelial development and conferred a metastasizing tumor phenotype on experimental mouse mammary tumors accompanied by a preponderance of progenitor cells. To analyze the effect of EphB4 overexpression on mammary epithelial cell fate, we have used Fluorescence Activated Cell Sorting (FACS) analyses to quantify epithelial sub-populations and repopulation assays of cleared fat pads to investigate their regenerative potential. These experiments revealed that deregulated EphB4 expression leads to an augmentation of bi-potent progenitor cells and to a shift of the differentiation pathway towards the luminal lineage. The analyses of the ductal outgrowths indicated that EphB4 overexpression leads to enforced branching activity, impedes ductal differentiation and stimulates angiogenesis. To elucidate the mechanisms forwarding EphB4 signals, we have compared the expression profile of defined cell populations between EphB4 transgene and wild type mammary glands concentrating on the wnt signaling pathway and on genes implicated in cell migration. With respect to wnt signaling, the progenitor cell population was the most affected, whereas the stem cell-enriched population showed the most pronounced deregulation of migration-associated genes. Thus, the luminal epithelial EphB4 signaling contributes, most likely via wnt signaling, to the regulation of migration and cell fate of early progenitors and is involved in the determination of branching points along the ductal tree.