4 resultados para Production modes
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This paper deals with scheduling batch (i.e., discontinuous), continuous, and semicontinuous production in process industries (e.g., chemical, pharmaceutical, or metal casting industries) where intermediate storage facilities and renewable resources (processing units and manpower) of limited capacity have to be observed. First, different storage configurations typical of process industries are discussed. Second, a basic scheduling problem covering the three above production modes is presented. Third, (exact and truncated) branch-and-bound methods for the basic scheduling problem and the special case of batch scheduling are proposed and subjected to an experimental performance analysis. The solution approach presented is flexible and in principle simple, and it can (approximately) solve relatively large problem instances with sufficient accuracy.
Resumo:
The Sun shows strong variability in its magnetic activity, from Grand minima to Grand maxima, but the nature of the variability is not fully understood, mostly because of the insufficient length of the directly observed solar activity records and of uncertainties related to long-term reconstructions. Here we present a new adjustment-free reconstruction of solar activity over three millennia and study its different modes. Methods. We present a new adjustment-free, physical reconstruction of solar activity over the past three millennia, using the latest verified carbon cycle, 14C production, and archeomagnetic field models. This great improvement allowed us to study different modes of solar activity at an unprecedented level of details. Results. The distribution of solar activity is clearly bi-modal, implying the existence of distinct modes of activity. The main regular activity mode corresponds to moderate activity that varies in a relatively narrow band between sunspot numbers 20 and 67. The existence of a separate Grand minimum mode with reduced solar activity, which cannot be explained by random fluctuations of the regular mode, is confirmed at a high confidence level. The possible existence of a separate Grand maximum mode is also suggested, but the statistics is too low to reach a confident conclusion. Conclusions. The Sun is shown to operate in distinct modes – a main general mode, a Grand minimum mode corresponding to an inactive Sun, and a possible Grand maximum mode corresponding to an unusually active Sun. These results provide important constraints for both dynamo models of Sun-like stars and investigations of possible solar influence on Earth’s climate.
Resumo:
Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H --> gamma-gamma, H --> ZZ* --> 4 leptons and H --> WW --> 2 leptons + 2 neutrinos. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of about 25/fb. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson.
Resumo:
This paper reports a measurement of the W+b-jets (W+b+X and W+b (b) over bar +X) production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. These results are based on data corresponding to an integrated luminosity of 4.6 fb(-1), collected with the ATLAS detector. Cross-sections are presented as a function of jet multiplicity and of the transverse momentum of the leading b-jet for both the muon and electron decay modes of the W boson. The W+b-jets cross-section, corrected for all known detector effects, is quoted in a limited kinematic range. Combining the muon and electron channels, the fiducial cross-section for W+b-jets is measured to be 7.1 +/- 0.5 (stat) +/- 1.4 (syst) pb, consistent with the next-to-leading order QCD prediction, corrected for non-perturbative and double-parton interactions (DPI) contributions, of 4.70 +/- 0.09 (stat) (+0.60)(-0.49) (scale) +/- 0.06 (PDF) +/- 0.16 (non-pert) (+0.52)(-0.38) (DPI) pb.