40 resultados para Processing of pepper,
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The metalloprotease meprin has been implicated in tissue remodelling due to its capability to degrade extracellular matrix components. Here, we investigated the susceptibility of tenascin-C to cleavage by meprinbeta and the functional properties of its proteolytic fragments. A set of monoclonal antibodies against chicken and human tenascin-C allowed the mapping of proteolytic fragments generated by meprinbeta. In chicken tenascin-C, meprinbeta processed all three major splicing variants by removal of 10kDa N-terminal and 38kDa C-terminal peptides, leaving a large central part of subunits intact. A similar cleavage pattern was found for large human tenascin-C variant where two N-terminal peptides (10 or 15kDa) and two C-terminal fragments (40 and 55kDa) were removed from the intact subunit. N-terminal sequencing revealed the exact amino acid positions of cleavage sites. In both chicken and human tenascin-C N-terminal cleavages occurred just before and/or after the heptad repeats involved in subunit oligomerization. In the human protein, an additional cleavage site was identified in the alternative fibronectin type III repeat D. Whereas all these sites are known to be attacked by several other proteases, a unique cleavage by meprinbeta was located to the 7th constant fibronectin type III repeat in both chicken and human tenascin-C, thereby removing the C-terminal domain involved in its anti-adhesive activity. In cell adhesion assays meprinbeta-digested human tenascin-C was not able to interfere with fibronectin-mediated cell spreading, confirming cleavage in the anti-adhesive domain. Whereas the expression of meprinbeta and tenascin-C does not overlap in normal colon tissue, inflamed lesions of the mucosa from patients with Crohn's disease exhibited many meprinbeta-positive leukocytes in regions where tenascin-C was strongly induced. Our data indicate that, at least under pathological conditions, meprinbeta might attack specific functional sites in tenascin-C that are important for its oligomerization and anti-adhesive activity.
Resumo:
The African trypanosome, Trypanosoma brucei, has been used as a model to study the biosynthesis of GPI (glycosylphosphatidylinositol) anchors. In mammalian (bloodstream)-form parasites, diacyl-type GPI precursors are remodelled in their lipid moieties before attachment to variant surface glycoproteins. In contrast, the GPI precursors of insect (procyclic)-form parasites, consisting of lyso-(acyl)PI (inositol-acylated acyl-lyso-phosphatidylinositol) species, remain unaltered before protein attachment. By using a combination of metabolic labelling, cell-free assays and complementary MS analyses, we show in the present study that GPI-anchored glycoconjugates in T. congolense procyclic forms initially receive tri-acylated GPI precursors, which are subsequently de-acylated either at the glycerol backbone or on the inositol ring. Chemical and enzymatic treatments of [3H]myristate-labelled lipids in combination with ESI-MS/MS (electrospray ionization-tandem MS) and MALDI-QIT-TOF-MS3 (matrix-assisted laser-desorption ionization-quadrupole ion trap-time-of-flight MS) analyses indicate that the structure of the lipid moieties of steady-state GPI lipids from T. congolense procyclic forms consist of a mixture of lyso-(acyl)PI, diacyl-PI and diacyl-(acyl)PI species. Interestingly, some of these species are myristoylated at the sn-2 position. To our knowledge, this is the first demonstration of lipid remodelling at the level of protein- or polysaccharide-linked GPI anchors in procyclic-form trypanosomes.
Resumo:
Meprins ? and ?, a subgroup of zinc metalloproteinases belonging to the astacin family, are known to cleave components of the extracellular matrix, either during physiological remodeling or in pathological situations. In this study we present a new role for meprins in matrix assembly, namely the proteolytic processing of procollagens. Both meprins ? and ? release the N- and C-propeptides from procollagen III, with such processing events being critical steps in collagen fibril formation. In addition, both meprins cleave procollagen III at exactly the same site as the procollagen C-proteinases, including bone morphogenetic protein-1 (BMP-1) and other members of the tolloid proteinase family. Indeed, cleavage of procollagen III by meprins is more efficient than by BMP-1. In addition, unlike BMP-1, whose activity is stimulated by procollagen C-proteinase enhancer proteins (PCPEs), the activity of meprins on procollagen III is diminished by PCPE-1. Finally, following our earlier observations of meprin expression by human epidermal keratinocytes, meprin ? is also shown to be expressed by human dermal fibroblasts. In the dermis of fibrotic skin (keloids), expression of meprin ? increases and meprin ? begins to be detected. Our study suggests that meprins could be important players in several remodeling processes involving collagen fiber deposition.
Resumo:
An improved chemical strategy for processing of the generator produced 68Ga was developed based on processing of the original 68Ge/68Ga generator eluate on a micro-column. Direct pre-concentration and purification of the eluted 68Ga is performed on a cation-exchange resin in hydrochloric acid/acetone media. A supplementary step based on a second micro-column filled with a second resin allows direct re-adsorption of 68Ga eluted from the cation exchanger. 68Ga is finally striped from the second resin with a small volume of pure water. For this purpose a strong anion exchanger and a novel extraction chromatographic resin based on tetraalkyldiglycolamides are characterized. The strategy allows online pre-concentration and purification of 68Ga from the original generator eluate. The supplementary column allows transferring 68Ga with high radionuclide and chemical quality in the aqueous solution with small volume and low acidity useful for direct radiolabeling reactions.
Resumo:
Speech melody or prosody subserves linguistic, emotional, and pragmatic functions in speech communication. Prosodic perception is based on the decoding of acoustic cues with a predominant function of frequency-related information perceived as speaker's pitch. Evaluation of prosodic meaning is a cognitive function implemented in cortical and subcortical networks that generate continuously updated affective or linguistic speaker impressions. Various brain-imaging methods allow delineation of neural structures involved in prosody processing. In contrast to functional magnetic resonance imaging techniques, DC (direct current, slow) components of the EEG directly measure cortical activation without temporal delay. Activation patterns obtained with this method are highly task specific and intraindividually reproducible. Studies presented here investigated the topography of prosodic stimulus processing in dependence on acoustic stimulus structure and linguistic or affective task demands, respectively. Data obtained from measuring DC potentials demonstrated that the right hemisphere has a predominant role in processing emotions from the tone of voice, irrespective of emotional valence. However, right hemisphere involvement is modulated by diverse speech and language-related conditions that are associated with a left hemisphere participation in prosody processing. The degree of left hemisphere involvement depends on several factors such as (i) articulatory demands on the perceiver of prosody (possibly, also the poser), (ii) a relative left hemisphere specialization in processing temporal cues mediating prosodic meaning, and (iii) the propensity of prosody to act on the segment level in order to modulate word or sentence meaning. The specific role of top-down effects in terms of either linguistically or affectively oriented attention on lateralization of stimulus processing is not clear and requires further investigations.