26 resultados para Process Modeling, Collaboration, Distributed Modeling, Collaborative Technology
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Stepwise uncertainty reduction (SUR) strategies aim at constructing a sequence of points for evaluating a function f in such a way that the residual uncertainty about a quantity of interest progressively decreases to zero. Using such strategies in the framework of Gaussian process modeling has been shown to be efficient for estimating the volume of excursion of f above a fixed threshold. However, SUR strategies remain cumbersome to use in practice because of their high computational complexity, and the fact that they deliver a single point at each iteration. In this article we introduce several multipoint sampling criteria, allowing the selection of batches of points at which f can be evaluated in parallel. Such criteria are of particular interest when f is costly to evaluate and several CPUs are simultaneously available. We also manage to drastically reduce the computational cost of these strategies through the use of closed form formulas. We illustrate their performances in various numerical experiments, including a nuclear safety test case. Basic notions about kriging, auxiliary problems, complexity calculations, R code, and data are available online as supplementary materials.
Resumo:
Despite a broad range of collaboration tools already available, enterprises continue to look for ways to improve internal and external communication. Microblogging is such a new communication channel with some considerable potential to improve intra-firm transparency and knowledge sharing. However, the adoption of such social software presents certain challenges to enterprises. Based on the results of four focus group sessions, we identified several new constructs to play an important role in the microblogging adoption decision. Examples include privacy concerns, communication benefits, perceptions regarding signal-to-noise ratio, as well codification effort. Integrating these findings with common views on technology acceptance, we formulate a model to predict the adoption of a microblogging system in the workspace. Our findings serve as an important guideline for managers seeking to realize the potential of microblogging in their company.
Resumo:
Objective: Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. Method: TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. Results: TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. Conclusions: TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy.
Resumo:
Despite the impact of red blood cell (RBC) Life-spans in some disease areas such as diabetes or anemia of chronic kidney disease, there is no consensus on how to quantitatively best describe the process. Several models have been proposed to explain the elimination process of RBCs: random destruction process, homogeneous life-span model, or a series of 4-transit compartment model. The aim of this work was to explore the different models that have been proposed in literature, and modifications to those. The impact of choosing the right model on future outcomes prediction--in the above mentioned areas--was also investigated. Both data from indirect (clinical data) and direct life-span measurement (biotin-labeled data) methods were analyzed using non-linear mixed effects models. Analysis showed that: (1) predictions from non-steady state data will depend on the RBC model chosen; (2) the transit compartment model, which considers variation in life-span in the RBC population, better describes RBC survival data than the random destruction or homogenous life-span models; and (3) the additional incorporation of random destruction patterns, although improving the description of the RBC survival data, does not appear to provide a marked improvement when describing clinical data.