2 resultados para Privação monocular

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histological serial sections, three-dimensional reconstructions and morphometry served to study the postnatal development of V1 in tree shrews. The main objectives were to evaluate the expansion of V1, the implications of its growth on the occipital cortex and, vice versa, the effects of the expanding neocortex on the topography of V1. The future V1 was identified on postnatal day 1 by its granular layer IV, covering the superior surface of the occipital cortices including the poles. A subdivision of layer IV, distinctive for the binocular part, was evident in the central region. V1 expanded continuously with age into all directions succeeded by the maturation of layering. The monocular part was recognized from day 15 onward, after the binocular part had reached its medial border. In reference to the retinotopic map of V1, regions emerged in a coherent temporo-spatial sequence delineating the retinal topography in a central to peripheral gradient beginning with the visual streak representation. The growth of V1 was greatest until tree shrews open their eyes, culminated during adolescence, and completed after a subsequent decrease in the young adult. Simultaneous expansion of the neocortex induced a shifting of V1. Translation and elongation of V1 entailed that the occipital cortex covered the superior colliculi along with a downward rotation of the poles. The enlargement of the occipital part of the hemispheres was in addition associated with the formation of a small occipital horn in the lateral ventricles, indicating an incipient 'true' occipital lobe harbouring mainly cortices involved in visual functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis covers a broad part of the field of computational photography, including video stabilization and image warping techniques, introductions to light field photography and the conversion of monocular images and videos into stereoscopic 3D content. We present a user assisted technique for stereoscopic 3D conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as guides of an image warp that produces a stereo image pair. Our method is most suitable for scenes with large scale structures such as buildings and is able to skip the step of constructing a depth map. Further, we propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As the input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We convert the input into a regularly sampled 3D light field by resampling and aligning them in the spatio-temporal domain. We also present a novel technique for high-quality disparity estimation from light fields. Finally, we show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.