41 resultados para Princeton Ocean Model

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Ensemble Kalman Filter is applied to assimilate observed tracer fields in various combinations in the Bern3D ocean model. Each tracer combination yields a set of optimal transport parameter values that are used in projections with prescribed CO2 stabilization pathways. The assimilation of temperature and salinity fields yields a too vigorous ventilation of the thermocline and the deep ocean, whereas the inclusion of CFC-11 and radiocarbon improves the representation of physical and biogeochemical tracers and of ventilation time scales. Projected peak uptake rates and cumulative uptake of CO2 by the ocean are around 20% lower for the parameters determined with CFC-11 and radiocarbon as additional target compared to those with salinity and temperature only. Higher surface temperature changes are simulated in the Greenland–Norwegian–Iceland Sea and in the Southern Ocean when CFC-11 is included in the Ensemble Kalman model tuning. These findings highlights the importance of ocean transport calibration for the design of near-term and long-term CO2 emission mitigation strategies and for climate projections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neodymium (Nd) isotopic composition (Nd) of seawater is a quasi-conservative tracer of water mass mixing and is assumed to hold great potential for paleoceanographic studies. Here we present a comprehensive approach for the simulation of the two neodymium isotopes 143Nd, and 144Nd using the Bern3D model, a low resolution ocean model. The high computational efficiency of the Bern3D model in conjunction with our comprehensive approach allows us to systematically and extensively explore the sensitivity of Nd concentrations and Nd to the parametrisation of sources and sinks. Previous studies have been restricted in doing so either by the chosen approach or by computational costs. Our study thus presents the most comprehensive survey of the marine Nd cycle to date. Our model simulates both Nd concentrations as well as Nd in good agreement with observations. Nd covaries with salinity, thus underlining its potential as a water mass proxy. Results confirm that the continental margins are required as a Nd source to simulate Nd concentrations and Nd consistent with observations. We estimate this source to be slightly smaller than reported in previous studies and find that above a certain magnitude its magnitude affects Nd only to a small extent. On the other hand, the parametrisation of the reversible scavenging considerably affects the ability of the model to simulate both, Nd concentrations and Nd. Furthermore, despite their small contribution, we find dust and rivers to be important components of the Nd cycle. In additional experiments, we systematically varied the diapycnal diffusivity as well as the Atlantic-to-Pacific freshwater flux to explore the sensitivity of Nd concentrations and its isotopic signature to the strength and geometry of the overturning circulation. These experiments reveal that Nd concentrations and Nd are comparatively little affected by variations in diapycnal diffusivity and the Atlantic-to-Pacific freshwater flux. In contrast, an adequate representation of Nd sources and sinks is crucial to simulate Nd concentrations and Nd consistent with observations. The good agreement of our results with observations paves the way for the evaluation of the paleoceanographic potential of Nd in further model studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean–sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72–1.05) Gt C yr−1, that is within the lower half of previously published estimates (0.4–1.8 Gt C yr−1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo–Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system models to minimise computational costs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The response of atmospheric chemistry and dynamics to volcanic eruptions and to a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere–ocean chemistry general circulation model SOCOL-MPIOM (modeling tools for studies of SOlar Climate Ozone Links-Max Planck Institute Ocean Model) covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric dynamics in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15%, which represents the presently discussed highest estimate of UV irradiance change caused by solar activity changes, causes global ozone decrease below the stratopause reaching as much as 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the mid-stratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere, allowing more water vapour to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx, leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation when all forcing factors are applied during the Dalton Minimum (DM) – this effect is especially well visible for NOx/NOy. Thus, this study also shows the non-linear behaviour of the coupled chemistry-climate system. Finally, we conclude that especially UV and volcanic eruptions dominate the changes in the ozone, temperature and dynamics while the NOx field is dominated by the energetic particle precipitation. Visible radiation changes have only very minor effects on both stratospheric dynamics and chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An important key for the understanding of the dynamic response to large tropical volcanic eruptions is the warming of the tropical lower stratosphere and the concomitant intensification of the polar vortices. Although this mechanism is reproduced by most general circulation models today, most models still fail in producing an appropriate winter warming pattern in the Northern Hemisphere. In this study ensemble sensitivity experiments were carried out with a coupled atmosphere-ocean model to assess the influence of different ozone climatologies on the atmospheric dynamics and in particular on the northern hemispheric winter warming. The ensemble experiments were perturbed by a single Tambora-like eruption. Larger meridional gradients in the lower stratospheric ozone favor the coupling of zonal wind anomalies between the stratosphere and the troposphere after the eruption. The associated sea level pressure, temperature, and precipitation patterns are more pronounced and the northern hemispheric winter warming is highly significant. Conversely, weaker meridional ozone gradients lead to a weaker response of the winter warming and the associated patterns. The differences in the number of stratosphere-troposphere coupling events between the ensembles experiments indicate a nonlinear response behavior of the dynamics with respect to the ozone and the volcanic forcing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Salt transport in the Irminger Current and thus the coupling between eastern and western subpolar North Atlantic plays an important role for climate variability across a wide range of time scales. High-resolution ocean modeling and observations indicate that 5 salinities in the eastern subpolar North Atlantic decrease with enhanced circulation of the North Atlantic subpolar gyre (SPG). This has led to the perception that a stronger SPG also transports less salt westward. In this study, we analyze a regional ocean model and a comprehensive global coupled climate model, and show that a stronger SPG transports more salt in the Irminger Current irrespective of lower salinities in its 10 source region. The additional salt converges in the Labrador Sea and the Irminger Basin by eddy transports, increases surface salinity in the western SPG, and favors more intense deep convection. This is part of a positive feedback mechanism with potentially large implications for climate variability and predictability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ocean acidification from the uptake of anthropogenic carbon is simulated for the industrial period and IPCC SRES emission scenarios A2 and B1 with a global coupled carbon cycle-climate model. Earlier studies identified seawater saturation state with respect to aragonite, a mineral phase of calcium carbonate, as a key variable governing impacts on corals and other shell-forming organisms. Globally in the A2 scenario, water saturated by more than 300%, considered suitable for coral growth, vanishes by 2070 AD (CO2≈630 ppm), and the ocean volume fraction occupied by saturated water decreases from 42% to 25% over this century. The largest simulated pH changes worldwide occur in Arctic surface waters, where hydrogen ion concentration increases by up to 185% (ΔpH=−0.45). Projected climate change amplifies the decrease in Arctic surface mean saturation and pH by more than 20%, mainly due to freshening and increased carbon uptake in response to sea ice retreat. Modeled saturation compares well with observation-based estimates along an Arctic transect and simulated changes have been corrected for remaining model-data differences in this region. Aragonite undersaturation in Arctic surface waters is projected to occur locally within a decade and to become more widespread as atmospheric CO2 continues to grow. The results imply that surface waters in the Arctic Ocean will become corrosive to aragonite, with potentially large implications for the marine ecosystem, if anthropogenic carbon emissions are not reduced and atmospheric CO2 not kept below 450 ppm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Initialising the ocean internal variability for decadal predictability studies is a new area of research and a variety of ad hoc methods are currently proposed. In this study, we explore how nudging with sea surface temperature (SST) and salinity (SSS) can reconstruct the threedimensional variability of the ocean in a perfect model framework. This approach builds on the hypothesis that oceanic processes themselves will transport the surface information into the ocean interior as seen in ocean-only simulations. Five nudged simulations are designed to reconstruct a 150 years ‘‘target’’ simulation, defined as a portion of a long control simulation. The nudged simulations differ by the variables restored to, SST or SST + SSS, and by the area where the nudging is applied. The strength of the heat flux feedback is diagnosed from observations and the restoring coefficients for SSS use the same time-scale. We observed that this choice prevents spurious convection at high latitudes and near sea-ice border when nudging both SST and SSS. In the tropics, nudging the SST is enough to reconstruct the tropical atmosphere circulation and the associated dynamical and thermodynamical impacts on the underlying ocean. In the tropical Pacific Ocean, the profiles for temperature show a significant correlation from the surface down to 2,000 m, due to dynamical adjustment of the isopycnals. At mid-tohigh latitudes, SSS nudging is required to reconstruct both the temperature and the salinity below the seasonal thermocline. This is particularly true in the North Atlantic where adding SSS nudging enables to reconstruct the deep convection regions of the target. By initiating a previously documented 20-year cycle of the model, the SST + SSS nudging is also able to reproduce most of the AMOC variations, a key source of decadal predictability. Reconstruction at depth does not significantly improve with amount of time spent nudging and the efficiency of the surface nudging rather depends on the period/events considered. The joint SST + SSS nudging applied verywhere is the most efficient approach. It ensures that the right water masses are formed at the right surface density, the subsequent circulation, subduction and deep convection further transporting them at depth. The results of this study underline the potential key role of SSS for decadal predictability and further make the case for sustained largescale observations of this field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The sensitivity of the neodymium isotopic composition (ϵNd) to tectonic rearrangements of seaways is investigated using an Earth System Model of Intermediate Complexity. The shoaling and closure of the Central American Seaway (CAS) is simulated, as well as the opening and deepening of Drake Passage (DP). Multiple series of equilibrium simulations with various intermediate depths are performed for both seaways, providing insight into ϵNd and circulation responses to progressive throughflow evolutions. Furthermore, the sensitivity of these responses to the Atlantic Meridional Overturning Circulation (AMOC) and the neodymium boundary source is examined. Modeled ϵNd changes are compared to sediment core and ferromanganese (Fe-Mn) crust data. The model results indicate that the North Atlantic ϵNd response to the CAS shoaling is highly dependent on the AMOC state, i.e., on the AMOC strength before the shoaling to shallow depths (preclosure). Three scenarios based on different AMOC forcings are discussed, of which the model-data agreement favors a shallow preclosure (Miocene) AMOC (∼6 Sv). The DP opening causes a rather complex circulation response, resulting in an initial South Atlantic ϵNd decrease preceding a larger increase. This feature may be specific to our model setup, which induces a vigorous CAS throughflow that is strongly anticorrelated to the DP throughflow. In freshwater experiments following the DP deepening, ODP Site 1090 is mainly influenced by AMOC and DP throughflow changes, while ODP Site 689 is more strongly influenced by Southern Ocean Meridional Overturning Circulation and CAS throughflow changes. The boundary source uncertainty is largest for shallow seaways and at shallow sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global three-dimensional ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during the early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.