13 resultados para Pressure recovery
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Aims Cardiac grafts from non-heartbeating donors (NHBDs) could significantly increase organ availability and reduce waiting-list mortality. Reluctance to exploit hearts from NHBDs arises from obligatory delays in procurement leading to periods of warm ischemia and possible subsequent contractile dysfunction. Means for early prediction of graft suitability prior to transplantation are thus required for development of heart transplantation programs with NHBDs. Methods and Results Hearts (n = 31) isolated from male Wistar rats were perfused with modified Krebs-Henseleit buffer aerobically for 20 min, followed by global, no-flow ischemia (32°C) for 30, 50, 55 or 60 min. Reperfusion was unloaded for 20 min, and then loaded, in working-mode, for 40 min. Left ventricular (LV) pressure was monitored using a micro-tip pressure catheter introduced via the mitral valve. Several hemodynamic parameters measured during early, unloaded reperfusion correlated significantly with LV work after 60 min reperfusion (p<0.001). Coronary flow and the production of lactate and lactate dehydrogenase (LDH) also correlated significantly with outcomes after 60 min reperfusion (p<0.05). Based on early reperfusion hemodynamic measures, a composite, weighted predictive parameter, incorporating heart rate (HR), developed pressure (DP) and end-diastolic pressure, was generated and evaluated against the HR-DP product after 60 min of reperfusion. Effective discriminating ability for this novel parameter was observed for four HR*DP cut-off values, particularly for ≥20 *103 mmHg*beats*min−1 (p<0.01). Conclusion Upon reperfusion of a NHBD heart, early evaluation, at the time of organ procurement, of cardiac hemodynamic parameters, as well as easily accessible markers of metabolism and necrosis seem to accurately predict subsequent contractile recovery and could thus potentially be of use in guiding the decision of accepting the ischemic heart for transplantation.
Resumo:
After an uneventful general anesthesia, in a horse negative pressure pulmonary edema developed due to acute upper airway obstruction during the anesthetic recovery phase after colic surgery. No pathologic alteration of respiration was observed until the horse stood up and began suffocating. The horse had recovered with the nasogastric tube in situ. This, together with the postmortem diagnosis of laryngeal hemiplegia resulted in impairment of airflow through the larynx and development of pulmonary edema. Our objective is to alert clinicians about the possible hazard of recovery with an in-situ nasogastric tube.
Resumo:
OBJECTIVES: Donation after circulatory declaration of death (DCDD) could significantly improve the number of cardiac grafts for transplantation. Graft evaluation is particularly important in the setting of DCDD given that conditions of cardio-circulatory arrest and warm ischaemia differ, leading to variable tissue injury. The aim of this study was to identify, at the time of heart procurement, means to predict contractile recovery following cardioplegic storage and reperfusion using an isolated rat heart model. Identification of reliable approaches to evaluate cardiac grafts is key in the development of protocols for heart transplantation with DCDD. METHODS: Hearts isolated from anaesthetized male Wistar rats (n = 34) were exposed to various perfusion protocols. To simulate DCDD conditions, rats were exsanguinated and maintained at 37°C for 15-25 min (warm ischaemia). Isolated hearts were perfused with modified Krebs-Henseleit buffer for 10 min (unloaded), arrested with cardioplegia, stored for 3 h at 4°C and then reperfused for 120 min (unloaded for 60 min, then loaded for 60 min). Left ventricular (LV) function was assessed using an intraventricular micro-tip pressure catheter. Statistical significance was determined using the non-parametric Spearman rho correlation analysis. RESULTS: After 120 min of reperfusion, recovery of LV work measured as developed pressure (DP)-heart rate (HR) product ranged from 0 to 15 ± 6.1 mmHg beats min(-1) 10(-3) following warm ischaemia of 15-25 min. Several haemodynamic parameters measured during early, unloaded perfusion at the time of heart procurement, including HR and the peak systolic pressure-HR product, correlated significantly with contractile recovery after cardioplegic storage and 120 min of reperfusion (P < 0.001). Coronary flow, oxygen consumption and lactate dehydrogenase release also correlated significantly with contractile recovery following cardioplegic storage and 120 min of reperfusion (P < 0.05). CONCLUSIONS: Haemodynamic and biochemical parameters measured at the time of organ procurement could serve as predictive indicators of contractile recovery. We believe that evaluation of graft suitability is feasible prior to transplantation with DCDD, and may, consequently, increase donor heart availability.
Resumo:
BACKGROUND: Systemic hypertension confers a hypercoagulable state. We hypothesized that resting mean blood pressure (MBP) interacts with stress hormones in predicting coagulation activity at rest and with acute mental stress. METHODS: We measured plasma clotting factor VII activity (FVII:C), FVIII:C, fibrinogen, D-dimer, epinephrine and norepinephrine, and saliva cortisol in 42 otherwise healthy normotensive and hypertensive medication-free men (mean age 43 +/- 14 years) at rest, immediately after stress, and twice during 60 min of recovery from stress. RESULTS: At rest, the MBP-by-epinephrine interaction predicted FVII:C (beta = -0.33, P < 0.04) and D-dimer (beta = 0.26, P < 0.05), and the MBP-by-cortisol interaction predicted D-dimer (beta = 0.43, P = 0.001), all independent of age and body mass index (BMI). Resting norepinephrine predicted fibrinogen (beta = 0.42, P < 0.01) and D-dimer (beta = 0.37, P < 0.03), both independent of MBP. MBP predicted FVIII:C change from rest to immediately post-stress independent of epinephrine (beta = -0.37, P < 0.03) and norepinephrine (beta = -0.38, P < 0.02). Cortisol change predicted FVIII:C change (beta = -0.30, P < 0.05) independent of age, BMI and MBP. Integrated norepinephrine change from rest to recovery (area under the curve, AUC) predicted D-dimer AUC (beta = 0.34, P = 0.04) independent of MBP. The MBP-by-epinephrine AUC interaction predicted FVII:C AUC (beta = 0.28) and fibrinogen AUC (beta = -0.30), and the MBP-by-norepinephrine AUC interaction predicted FVIII:C AUC (beta = -0.28), all with borderline significance (Ps < 0.09) and independent of age and BMI. CONCLUSIONS: MBP significantly altered the association between stress hormones and coagulation activity at rest and, with borderline significance, across the entire stress and recovery interval. Independent of MBP, catecholamines were associated with procoagulant effects and cortisol reactivity dampened the acute procoagulant stress response.
Resumo:
OBJECTIVE: To compare anesthesia recovery quality after racemic (R-/S-) or S-ketamine infusions during isoflurane anesthesia in horses. ANIMALS: 10 horses undergoing arthroscopy. PROCEDURES: After administration of xylazine for sedation, horses (n = 5/group) received R-/S-ketamine (2.2 mg/kg) or S-ketamine (1.1 mg/kg), IV, for anesthesia induction. Anesthesia was maintained with isoflurane in oxygen and R-/S-ketamine (1 mg/kg/h) or S-ketamine (0.5 mg/kg/h). Heart rate, invasive mean arterial pressure, and end-tidal isoflurane concentration were recorded before and during surgical stimulation. Arterial blood gases were evaluated every 30 minutes. Arterial ketamine and norketamine enantiomer plasma concentrations were quantified at 60 and 120 minutes. After surgery, horses were kept in a padded recovery box, sedated with xylazine, and video-recorded for evaluation of recovery quality by use of a visual analogue scale (VAS) and a numeric rating scale. RESULTS: Horses in the S-ketamine group had better numeric rating scale and VAS values than those in the R-/S-ketamine group. In the R-/S-ketamine group, duration of infusion was positively correlated with VAS value. Both groups had significant increases in heart rate and mean arterial pressure during surgical stimulation; values in the R-/S-ketamine group were significantly higher than those of the S-ketamine group. Horses in the R-/S-ketamine group required slightly higher end-tidal isoflurane concentration to maintain a surgical plane of anesthesia. Moderate respiratory acidosis and reduced oxygenation were evident. The R-norketamine concentrations were significantly lower than S-norketamine concentrations in the R-/S-ketamine group. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with R-/S-ketamine, anesthesia recovery was better with S-ketamine infusions in horses.
Resumo:
Blood coagulation activation might be one mechanism linking acute mental stress with coronary events. We investigated the natural habituation of coagulation responses and recovery to short-term mental stress. Three times with one-week intervals, 24 men (mean age 47 +/- 7 years) underwent the same 13-min stressor (preparation, job interview, mental arithmetic). During each visit venous blood was obtained four times (baseline, immediately post-stress, 45 min of recovery, 105 min of recovery). Eight blood coagulation parameters were measured at weeks one and three. Acute stress provoked increases in von Willebrand factor antigen, fibrinogen, clotting factor FVII activity (FVII:C), FVIII:C, FXII:C (p's < or = 0.019), and D-dimer (N.S.). All coagulation parameters experienced full recovery except FVIII:C (p = 0.022). Stress did not significantly affect activated partial thromboplastin time and prothrombin time. At all time points FVIII:C and FXII:C levels were significantly higher at week one compared to week three (p's < or = 0.041). Before catheter insertion, systolic blood pressure (p = 0.001) and heart rate (p = 0.026) were relatively higher at week one. Unlike the magnitude of systolic blood pressure response to stress (p = 0.007) and of cortisol recovery from stress (p = 0.002), the magnitude of all coagulation responses to stress and the recovery from stress were similar in week one and week three. Sympathetic activation with anticipatory stress best explained increased baseline activity in FVIII and FXII at week one. An incapacity of the coagulation system to adapt to stress repeats is perhaps a consequence of evolution, but might also contribute to increased coronary risk in some individuals, particularly in those with cardiovascular diseases.
Resumo:
We examined the magnitude of 20-min moderate exercise-induced platelet activation in 50 volunteers with normal (n=31) or elevated blood pressure (EBP; n=19). Blood was drawn before, immediately after, and 25 min after exercise. Antibody-staining for platelet activation markers, P-selectin, and fibrinogen receptors was done with and without adenosine diphosphate (ADP) stimulation in whole blood for flow cytometric analyses. Exercise led to increases in percent aggregated platelets and percent platelets expressing P-selectin or PAC-1 binding (ps< or =.001). This increase in percent platelets expressing P-selectin continued even after a 25-min rest only in the EBP group (p< or =.01) accompanied by an increase in percent of aggregated platelets (p< or =.05). Although ADP stimulation led to increased platelet activation at rest, it was attenuated following exercise, even among EBP individuals. A moderate exercise challenge induced prolonged platelet activation in individuals with EBP but attenuation in activation to further stimulation by an agonist. Findings suggest that a recovery period after physical stress appears critical in individuals with high BP regarding platelet activation and aggregation, which can lead to an acute coronary syndrome in vulnerable individuals.
Resumo:
The clinical importance of pulsatility is a recurring topic of debate in mechanical circulatory support. Lack of pulsatility has been identified as a possible factor responsible for adverse events and has also demonstrated a role in myocardial perfusion and cardiac recovery. A commonly used method for restoring pulsatility with rotodynamic blood pumps (RBPs) is to modulate the speed profile, synchronized to the cardiac cycle. This introduces additional parameters that influence the (un)loading of the heart, including the timing (phase shift) between the native cardiac cycle and the pump pulses, and the amplitude of speed modulation. In this study, the impact of these parameters upon the heart-RBP interaction was examined in terms of the pressure head-flow (HQ) diagram. The measurements were conducted using a rotodynamic Deltastream DP2 pump in a validated hybrid mock circulation with baroreflex function. The pump was operated with a sinusoidal speed profile, synchronized to the native cardiac cycle. The simulated ventriculo-aortic cannulation showed that the level of (un)loading and the shape of the HQ loops strongly depend on the phase shift. The HQ loops displayed characteristic shapes depending on the phase shift. Increased contribution of native contraction (increased ventricular stroke work [WS ]) resulted in a broadening of the loops. It was found that the previously described linear relationship between WS and the area of the HQ loop for constant pump speeds becomes a family of linear relationships, whose slope depends on the phase shift.
Resumo:
The aim of the present study was to investigate the effects of different speech tasks (recitation of prose (PR), alliteration (AR) and hexameter (HR) verses) and a control task (mental arithmetic (MA) with voicing of the result) on endtidal CO2 (ET-CO2), cerebral hemodynamics; i.e. total hemoglobin (tHb) and tissue oxygen saturation (StO2). tHb and StO2 were measured with a frequency domain near infrared spectrophotometer (ISS Inc., USA) and ET-CO2 with a gas analyzer (Nellcor N1000). Measurements were performed in 24 adult volunteers (11 female, 13 male; age range 22 to 64 years) during task performance in a randomized order on 4 different days to avoid potential carry over effects. Statistical analysis was applied to test differences between baseline, 2 recitation and 5 recovery periods. The two brain hemispheres and 4 tasks were tested separately. Data analysis revealed that during the recitation tasks (PR, AR and HR) StO2 decreased statistically significant (p < 0.05) during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. tHb showed a significant decrease during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased significantly. A significant decrease in ET-CO2 was found during all 4 tasks with the smallest decrease during the MA task. In conclusion, we hypothesize that the observed changes in tHb and StO2 are mainly caused by an altered breathing during the tasks that led a lowering of the CO2 content in the blood provoked a cerebral CO2 reaction, i.e. a vasoconstriction of blood vessels due to decreased CO2 pressure and thereby decrease in cerebral blood volume. Therefore, breathing changes should be monitored during brain studies involving speech when using functional near infrared spectroscopy (fNIRS) to ensure a correct interpretation of changes in hemodynamics and oxygenation.
Resumo:
The International Surface Pressure Databank (ISPD) is the world's largest collection of global surface and sea-level pressure observations. It was developed by extracting observations from established international archives, through international cooperation with data recovery facilitated by the Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative, and directly by contributing universities, organizations, and countries. The dataset period is currently 1768–2012 and consists of three data components: observations from land stations, marine observing systems, and tropical cyclone best track pressure reports. Version 2 of the ISPD (ISPDv2) was created to be observational input for the Twentieth Century Reanalysis Project (20CR) and contains the quality control and assimilation feedback metadata from the 20CR. Since then, it has been used for various general climate and weather studies, and an updated version 3 (ISPDv3) has been used in the ERA-20C reanalysis in connection with the European Reanalysis of Global Climate Observations project (ERA-CLIM). The focus of this paper is on the ISPDv2 and the inclusion of the 20CR feedback metadata. The Research Data Archive at the National Center for Atmospheric Research provides data collection and access for the ISPDv2, and will provide access to future versions.
Resumo:
Purpose To investigate the effect of topical glucose on visual parameters in individuals with primary open-angle glaucoma (POAG). Design Double-blind, randomized, crossover study. Participants Nondiabetic pseudophakic patients with definite POAG were recruited; 29 eyes of 16 individuals participated in study 1. A follow-up study (study 2) included 14 eyes of 7 individuals. Intervention Eyes were randomly allocated to receive 50% glucose or saline eye drops every 5 minutes for 60 minutes. Main Outcome Measures The contrast sensitivity and best-corrected logarithm of the minimum angle of resolution (logMAR). Results The 50% glucose reached the vitreous in pseudophakic but not phakic individuals. Glucose significantly improved the mean contrast sensitivity at 12 cycles/degree compared with 0.9% saline by 0.26 log units (95% confidence interval [CI], 0.13–0.38; P < 0.001) and 0.40 log units (95% CI, 0.17–0.60; P < 0.001) in the follow-up study. The intraocular pressure, refraction, and central corneal thickness were not affected by glucose; age was not a significant predictor of the response. Conclusions Topical glucose temporarily improves psychophysical visual parameters in some individuals with POAG, suggesting that neuronal energy substrate delivery to the vitreous reservoir may recover function of “sick” retinal neurons.
Resumo:
We tested the assumption that active relaxation following an ego-depletion task counteracts the negative effects of ego depletion on subsequent performance under evaluative pressure. N = 39 experienced basketball players were randomly assigned to a relaxation condition or to a control condition, and then performed a series of free-throws at two points of measurement (T1: baseline vs. T2: after working on a depleting task and either receiving active relaxation or a simple break). The results demonstrated that performance remained constant in the relaxation condition, whereas it significantly decreased in the control condition. The findings are in line with the notion that active relaxation leads to a quicker recovery from ego depletion.