7 resultados para Preparation and characterization of silver sulphide and ferric hydroxide thin films

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terminal sialic acid residues on surface-associated glycoconjugates mediate host cell interactions of many pathogens. Addition of sialic acid-rich fetuin enhanced, and the presence of the sialidiase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminic acid reduced, the physical interaction of Neospora caninum tachyzoites and bradyzoites with Vero cell monolayers. Thus, Neospora extracts were subjected to fetuin-agarose affinity chromatography in order to isolate components potentially interacting with sialic acid residues. SDS-PAGE and silver staining of the fetuin binding fraction revealed the presence of a single protein band of approximately 65 kDa, subsequently named NcFBP (Neospora caninum fetuin-binding protein), which was localized at the apical tip of the tachyzoites and was continuously released into the surrounding medium in a temperature-independent manner. NcFBP readily interacted with Vero cells and bound to chondroitin sulfate A and C, and anti-NcFBP antibodies interfered in tachyzoite adhesion to host cell monolayers. In additon, analysis of the fetuin binding fraction by gelatin substrate zymography was performed, and demonstrated the presence of two bands of 96 and 140 kDa exhibiting metalloprotease-activity. The metalloprotease activity readily degraded glycosylated proteins such as fetuin and bovine immunoglobulin G heavy chain, whereas non-glycosylated proteins such as bovine serum albumin and immunoglobulin G light chain were not affected. These findings suggest that the fetuin-binding fraction of Neospora caninum tachyzoites contains components that could be potentially involved in host-parasite interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most available studies of interconnected matrix porosity of crystalline rocks are based on laboratory investigations; that is, work on samples that have undergone stress relaxation and were affected by drilling and sample preparation. The extrapolation of the results to in situ conditions is therefore associated with considerable uncertainty, and this was the motivation to conduct the ‘in situ Connected Porosity’ experiment at the Grimsel Test Site (Central Swiss Alps). An acrylic resin doped with fluorescent agents was used to impregnate the microporous granitic matrix in situ around an injection borehole, and samples were obtained by overcoring. The 3-D structure of the porespace, represented by microcracks, was studied by U-stage fluorescence microscopy. Petrophysical methods, including the determination of porosity, permeability and P -wave velocity, were also applied. Investigations were conducted both on samples that were impregnated in situ and on non-impregnated samples, so that natural features could be distinguished from artefacts. The investigated deformed granites display complex microcrack populations representing a polyphase deformation at varying conditions. The crack population is dominated by open cleavage cracks in mica and grain boundary cracks. The porosity of non-impregnated samples lies slightly above 1 per cent, which is 2–2.5 times higher than the in situ porosity obtained for impregnated samples. Measurements of seismic velocities (Vp ) on spherical rock samples as a function of confining pressure, spatial direction and water saturation for both non-impregnated and impregnated samples provide further constraints on the distinction between natural and induced crack types. The main conclusions are that (1) an interconnected network of microcracks exists in the whole granitic matrix, irrespective of the distance to ductile and brittle shear zones, and (2) conventional laboratory methods overestimate the matrix porosity. Calculations of contaminant transport through fractured media often rely on matrix diffusion as a retardation mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorides are used in dental care due to their beneficial effect in tooth enamel de-/remineralization cycles. To achieve a desired constant supply of soluble fluorides in the oral cavity, different approaches have been followed. Here we present results on the preparation of CaF2 particles and their characterization with respect to a potential application as enamel associated fluoride releasing reservoirs. CaF2 particles were synthesized by precipitation from soluble NaF and CaCl2 salt solutions of defined concentrations and their morphology analyzed by scanning electron microscopy. CaF2 particles with defined sizes and shapes could be synthesized by adjusting the concentrations of the precursor salt solutions. Such particles interacted with enamel surfaces when applied at fluoride concentrations correlating to typical dental care products. Fluoride release from the synthesized CaF2 particles was observed to be largely influenced by the concentration of phosphate in the solution. Physiological solutions with phosphate concentration similar to saliva (3.5 mM) reduced the fluoride release from pure CaF2 particles by a factor of 10-20 × as compared to phosphate free buffer solutions. Fluoride release was even lower in human saliva. The fluoride release could be increased by the addition of phosphate in substoichiometric amounts during CaF2 particle synthesis. The presented results demonstrate that the morphology and fluoride release characteristics of CaF2 particles can be tuned and provide evidence of the suitability of synthetic CaF2 particles as enamel associated fluoride reservoirs.