29 resultados para Predictive kinematic model
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This study reviews and synthesizes the present knowledge on the Sesia–Dent Blanche nappes, the highest tectonic elements in the Western Alps (Switzerland and Italy), which comprise pieces of pre-Alpine basement and Mesozoic cover. All of the available data are integrated in a crustal-scale kinematic model with the aim to reconstruct the Alpine tectono-metamorphic evolution of the Sesia–Dent Blanche nappes. Although major uncertainties remain in the pre-Alpine geometry, the basement and cover sequences of the Sesia–Dent Blanche nappes are seen as part of a thinned continental crust derived from the Adriatic margin. The earliest stages of the Alpine evolution are interpreted as recording late Cretaceous subduction of the Adria-derived Sesia–Dent Blanche nappes below the South-Alpine domain. During this subduction, several sheets of crustal material were stacked and separated by shear zones that rework remnants of their Mesozoic cover. The recently described Roisan-Cignana Shear Zone of the Dent Blanche Tectonic System represents such a shear zone, indicating that the Sesia–Dent Blanche nappes represent a stack of several individual nappes. During the subsequent subduction of the Piemonte–Liguria Ocean large-scale folding of the nappe stack (including the Roisan-Cignana Shear Zone) took place under greenschist facies conditions, which indicates partial exhumation of the Dent Blanche Tectonic System. The entrance of the Briançonnais micro-continent within the subduction zone led to a drastic change in the deformation pattern of the Alpine belt, with rapid exhumation of the eclogite-facies ophiolite bearing units and thrust propagation towards the foreland. Slab breakoff probably was responsible for allowing partial melting in the mantle and Oligocene intrusions into the most internal parts of the Sesia–Dent Blanche nappes. Finally, indentation of the Adriatic plate into the orogenic wedge resulted in the formation of the Vanzone back-fold, which marks the end of the pervasive ductile deformation within the Sesia–Dent Blanche nappes during the earliest Miocene.
Resumo:
This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patient's information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions. The predictions are fed to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. An algorithm based on fuzzy logic has been developed for the on-line adaptation of the NMPC control parameters. The IIAS has been in silico evaluated using an appropriate simulation environment (UVa T1DM simulator). The IIAS was able to handle various meal profiles, fasting conditions, interpatient variability, intraday variation in physiological parameters, and errors in meal amount estimations.
Resumo:
BACKGROUND: In contrast to hypnosis, there is no surrogate parameter for analgesia in anesthetized patients. Opioids are titrated to suppress blood pressure response to noxious stimulation. The authors evaluated a novel model predictive controller for closed-loop administration of alfentanil using mean arterial blood pressure and predicted plasma alfentanil concentration (Cp Alf) as input parameters. METHODS: The authors studied 13 healthy patients scheduled to undergo minor lumbar and cervical spine surgery. After induction with propofol, alfentanil, and mivacurium and tracheal intubation, isoflurane was titrated to maintain the Bispectral Index at 55 (+/- 5), and the alfentanil administration was switched from manual to closed-loop control. The controller adjusted the alfentanil infusion rate to maintain the mean arterial blood pressure near the set-point (70 mmHg) while minimizing the Cp Alf toward the set-point plasma alfentanil concentration (Cp Alfref) (100 ng/ml). RESULTS: Two patients were excluded because of loss of arterial pressure signal and protocol violation. The alfentanil infusion was closed-loop controlled for a mean (SD) of 98.9 (1.5)% of presurgery time and 95.5 (4.3)% of surgery time. The mean (SD) end-tidal isoflurane concentrations were 0.78 (0.1) and 0.86 (0.1) vol%, the Cp Alf values were 122 (35) and 181 (58) ng/ml, and the Bispectral Index values were 51 (9) and 52 (4) before surgery and during surgery, respectively. The mean (SD) absolute deviations of mean arterial blood pressure were 7.6 (2.6) and 10.0 (4.2) mmHg (P = 0.262), and the median performance error, median absolute performance error, and wobble were 4.2 (6.2) and 8.8 (9.4)% (P = 0.002), 7.9 (3.8) and 11.8 (6.3)% (P = 0.129), and 14.5 (8.4) and 5.7 (1.2)% (P = 0.002) before surgery and during surgery, respectively. A post hoc simulation showed that the Cp Alfref decreased the predicted Cp Alf compared with mean arterial blood pressure alone. CONCLUSION: The authors' controller has a similar set-point precision as previous hypnotic controllers and provides adequate alfentanil dosing during surgery. It may help to standardize opioid dosing in research and may be a further step toward a multiple input-multiple output controller.
Resumo:
In this paper, an Insulin Infusion Advisory System (IIAS) for Type 1 diabetes patients, which use insulin pumps for the Continuous Subcutaneous Insulin Infusion (CSII) is presented. The purpose of the system is to estimate the appropriate insulin infusion rates. The system is based on a Non-Linear Model Predictive Controller (NMPC) which uses a hybrid model. The model comprises a Compartmental Model (CM), which simulates the absorption of the glucose to the blood due to meal intakes, and a Neural Network (NN), which simulates the glucose-insulin kinetics. The NN is a Recurrent NN (RNN) trained with the Real Time Recurrent Learning (RTRL) algorithm. The output of the model consists of short term glucose predictions and provides input to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. For the development and the evaluation of the IIAS, data generated from a Mathematical Model (MM) of a Type 1 diabetes patient have been used. The proposed control strategy is evaluated at multiple meal disturbances, various noise levels and additional time delays. The results indicate that the implemented IIAS is capable of handling multiple meals, which correspond to realistic meal profiles, large noise levels and time delays.
Resumo:
BACKGROUND: Clinical disorders often share common symptoms and aetiological factors. Bifactor models acknowledge the role of an underlying general distress component and more specific sub-domains of psychopathology which specify the unique components of disorders over and above a general factor. METHODS: A bifactor model jointly calibrated data on subjective distress from The Mood and Feelings Questionnaire and the Revised Children's Manifest Anxiety Scale. The bifactor model encompassed a general distress factor, and specific factors for (a) hopelessness-suicidal ideation, (b) generalised worrying and (c) restlessness-fatigue at age 14 which were related to lifetime clinical diagnoses established by interviews at ages 14 (concurrent validity) and current diagnoses at 17 years (predictive validity) in a British population sample of 1159 adolescents. RESULTS: Diagnostic interviews confirmed the validity of a symptom-level bifactor model. The underlying general distress factor was a powerful but non-specific predictor of affective, anxiety and behaviour disorders. The specific factors for hopelessness-suicidal ideation and generalised worrying contributed to predictive specificity. Hopelessness-suicidal ideation predicted concurrent and future affective disorder; generalised worrying predicted concurrent and future anxiety, specifically concurrent generalised anxiety disorders. Generalised worrying was negatively associated with behaviour disorders. LIMITATIONS: The analyses of gender differences and the prediction of specific disorders was limited due to a low frequency of disorders other than depression. CONCLUSIONS: The bifactor model was able to differentiate concurrent and predict future clinical diagnoses. This can inform the development of targeted as well as non-specific interventions for prevention and treatment of different disorders.
Resumo:
Purpose Accurate three-dimensional (3D) models of lumbar vertebrae can enable image-based 3D kinematic analysis. The common approach to derive 3D models is by direct segmentation of CT or MRI datasets. However, these have the disadvantages that they are expensive, timeconsuming and/or induce high-radiation doses to the patient. In this study, we present a technique to automatically reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image. Methods Our technique is based on a hybrid 2D/3D deformable registration strategy combining a landmark-to-ray registration with a statistical shape model-based 2D/3D reconstruction scheme. Fig. 1 shows different stages of the reconstruction process. Four cadaveric lumbar spine segments (total twelve lumbar vertebrae) were used to validate the technique. To evaluate the reconstruction accuracy, the surface models reconstructed from the lateral fluoroscopic images were compared to the associated ground truth data derived from a 3D CT-scan reconstruction technique. For each case, a surface-based matching was first used to recover the scale and the rigid transformation between the reconstructed surface model Results Our technique could successfully reconstruct 3D surface models of all twelve vertebrae. After recovering the scale and the rigid transformation between the reconstructed surface models and the ground truth models, the average error of the 2D/3D surface model reconstruction over the twelve lumbar vertebrae was found to be 1.0 mm. The errors of reconstructing surface models of all twelve vertebrae are shown in Fig. 2. It was found that the mean errors of the reconstructed surface models in comparison to their associated ground truths after iterative scaled rigid registrations ranged from 0.7 mm to 1.3 mm and the rootmean squared (RMS) errors ranged from 1.0 mm to 1.7 mm. The average mean reconstruction error was found to be 1.0 mm. Conclusion An accurate, scaled 3D reconstruction of the lumbar vertebra can be obtained from a single lateral fluoroscopic image using a statistical shape model based 2D/3D reconstruction technique. Future work will focus on applying the reconstructed model for 3D kinematic analysis of lumbar vertebrae, an extension of our previously-reported imagebased kinematic analysis. The developed method also has potential applications in surgical planning and navigation.
Resumo:
Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20\% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.
Resumo:
Meta-analysis of predictive values is usually discouraged because these values are directly affected by disease prevalence, but sensitivity and specificity sometimes show substantial heterogeneity as well. We propose a bivariate random-effects logitnormal model for the meta-analysis of the positive predictive value (PPV) and negative predictive value (NPV) of diagnostic tests.
Resumo:
OBJECTIVES: Donation after circulatory declaration of death (DCDD) could significantly improve the number of cardiac grafts for transplantation. Graft evaluation is particularly important in the setting of DCDD given that conditions of cardio-circulatory arrest and warm ischaemia differ, leading to variable tissue injury. The aim of this study was to identify, at the time of heart procurement, means to predict contractile recovery following cardioplegic storage and reperfusion using an isolated rat heart model. Identification of reliable approaches to evaluate cardiac grafts is key in the development of protocols for heart transplantation with DCDD. METHODS: Hearts isolated from anaesthetized male Wistar rats (n = 34) were exposed to various perfusion protocols. To simulate DCDD conditions, rats were exsanguinated and maintained at 37°C for 15-25 min (warm ischaemia). Isolated hearts were perfused with modified Krebs-Henseleit buffer for 10 min (unloaded), arrested with cardioplegia, stored for 3 h at 4°C and then reperfused for 120 min (unloaded for 60 min, then loaded for 60 min). Left ventricular (LV) function was assessed using an intraventricular micro-tip pressure catheter. Statistical significance was determined using the non-parametric Spearman rho correlation analysis. RESULTS: After 120 min of reperfusion, recovery of LV work measured as developed pressure (DP)-heart rate (HR) product ranged from 0 to 15 ± 6.1 mmHg beats min(-1) 10(-3) following warm ischaemia of 15-25 min. Several haemodynamic parameters measured during early, unloaded perfusion at the time of heart procurement, including HR and the peak systolic pressure-HR product, correlated significantly with contractile recovery after cardioplegic storage and 120 min of reperfusion (P < 0.001). Coronary flow, oxygen consumption and lactate dehydrogenase release also correlated significantly with contractile recovery following cardioplegic storage and 120 min of reperfusion (P < 0.05). CONCLUSIONS: Haemodynamic and biochemical parameters measured at the time of organ procurement could serve as predictive indicators of contractile recovery. We believe that evaluation of graft suitability is feasible prior to transplantation with DCDD, and may, consequently, increase donor heart availability.
Resumo:
Research suggests that mutans streptococci play an important role in cariogenesis in children but the usefulness of bacterial testing in risk assessment is unknown. Our objective was to summarize the literature assessing the association of mutans streptococci and dental caries in preschool children, (Pre)Medline (1966-2003), Embase (1980-2003), the Cochrane Register of Controlled Trials (2003, issue 3), and reference lists of included studies were searched. All abstracts found by the electronic searches (n = 981) were independently scrutinized by 2 reviewers. Minimal requirements for inclusion were assessment of preschool children without caries at baseline, reporting of mutans streptococci present in saliva or plaque at baseline and assessment of caries presence after a minimum of 6 months of follow-up. Participants' details, test methods, methodological characteristics and findings were extracted by one reviewer and cross-checked by another. Homogeneity was tested using chi2 tests. Results of plaque and saliva testing were pooled separately using a fixed effects model. Methodological quality of reports was low. Out of 9 studies included, data from 3 reports on plaque test assessment alone (n = 300) and from 4 reports on saliva test assessment alone (n = 451) were available for pooled analysis. The pooled risk ratio (95% CI) was 3.85 (2.48-5.96) in studies using plaque tests and 2.11 (1.47-3.02) in those using saliva testing. Presence of mutans streptococci, both in plaque or saliva of young caries-free children, appears to be associated with a considerable increase in caries risk. Lack of adjustment for potential confounders in the original studies, however, limits the extent to which interpretations for practice can be made.
Resumo:
Drug-induced respiratory depression is a common side effect of the agents used in anesthesia practice to provide analgesia and sedation. Depression of the ventilatory drive in the spontaneously breathing patient can lead to severe cardiorespiratory events and it is considered a primary cause of morbidity. Reliable predictions of respiratory inhibition in the clinical setting would therefore provide a valuable means to improve the safety of drug delivery. Although multiple studies investigated the regulation of breathing in man both in the presence and absence of ventilatory depressant drugs, a unified description of respiratory pharmacodynamics is not available. This study proposes a mathematical model of human metabolism and cardiorespiratory regulation integrating several isolated physiological and pharmacological aspects of acute drug-induced ventilatory depression into a single theoretical framework. The description of respiratory regulation has a parsimonious yet comprehensive structure with substantial predictive capability. Simulations relative to the synergistic interaction of the hypercarbic and hypoxic respiratory drive and the global effect of drugs on the control of breathing are in good agreement with published experimental data. Besides providing clinically relevant predictions of respiratory depression, the model can also serve as a test bed to investigate issues of drug tolerability and dose finding/control under non-steady-state conditions.
Resumo:
PURPOSE: The goal of this study was to analyse a possible association of admission blood glucose with hospital mortality of polytraumatised patients and to develop an outcome prediction model for this patient group. METHODS: The outcome of adult polytraumatised patients admitted to the University Hospital of Berne, Switzerland, between 2002 and 2004 with an ISS > or = 17, and more than one severely injured organ system was retrospectively analysed. RESULTS: The inclusion criteria were met by 555 patients, of which 108 (19.5%) died. Hyperglycaemia proved to be an independent predictor for hospital mortality (P < 0.0001), following multiple regression analysis. After inclusion of admission blood glucose, the calculated mortality prediction model performed better than currently described models (P < 0.0001, AUC 0.924). CONCLUSION: In this retrospective, single-centre study in polytraumatised patients, admission blood glucose proved to be an independent predictor of hospital mortality following regression analysis controlling for age, gender, injury severity and other laboratory parameters. A reliable admission blood glucose-based mortality prediction model for polytraumatised patients could be established. This observation may be helpful in improving the precision of future outcome prediction models for polytraumatised patients. These observations warrant further prospective evaluation.
Resumo:
BACKGROUND: The authors have shown that rats can be retrained to swim after a moderately severe thoracic spinal cord contusion. They also found that improvements in body position and hindlimb activity occurred rapidly over the first 2 weeks of training, reaching a plateau by week 4. Overground walking was not influenced by swim training, suggesting that swimming may be a task-specific model of locomotor retraining. OBJECTIVE: To provide a quantitative description of hindlimb movements of uninjured adult rats during swimming, and then after injury and retraining. METHODS: The authors used a novel and streamlined kinematic assessment of swimming in which each limb is described in 2 dimensions, as 3 segments and 2 angles. RESULTS: The kinematics of uninjured rats do not change over 4 weeks of daily swimming, suggesting that acclimatization does not involve refinements in hindlimb movement. After spinal cord injury, retraining involved increases in hindlimb excursion and improved limb position, but the velocity of the movements remained slow. CONCLUSION: These data suggest that the activity pattern of swimming is hardwired in the rat spinal cord. After spinal cord injury, repetition is sufficient to bring about significant improvements in the pattern of hindlimb movement but does not improve the forces generated, leaving the animals with persistent deficits. These data support the concept that force (load) and pattern generation (recruitment) are independent and may have to be managed together with respect to postinjury rehabilitation.