16 resultados para Potential Theory
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book presents the application of graph theory to low-level processing of digital images such as a new method for partitioning a given image into a hierarchy of homogeneous areas using graph pyramids, or a study of the relationship between graph theory and digital topology. Part II presents graph-theoretic learning algorithms for high-level computer vision and pattern recognition applications, including a survey of graph based methodologies for pattern recognition and computer vision, a presentation of a series of computationally efficient algorithms for testing graph isomorphism and related graph matching tasks in pattern recognition and a new graph distance measure to be used for solving graph matching problems. Finally, Part III provides detailed descriptions of several applications of graph-based methods to real-world pattern recognition tasks. It includes a critical review of the main graph-based and structural methods for fingerprint classification, a new method to visualize time series of graphs, and potential applications in computer network monitoring and abnormal event detection.
Resumo:
The theory on the intensities of 4f-4f transitions introduced by B.R. Judd and G.S. Ofelt in 1962 has become a center piece in rare-earth optical spectroscopy over the past five decades. Many fundamental studies have since explored the physical origins of the Judd–Ofelt theory and have proposed numerous extensions to the original model. A great number of studies have applied the Judd–Ofelt theory to a wide range of rare-earth doped materials, many of them with important applications in solid-state lasers, optical amplifiers, phosphors for displays and solid state lighting, upconversion and quantum-cutting materials, and fluorescent markers. This paper takes the view of the experimentalist who is interested in appreciating the basic concepts, implications, assumptions, and limitations of the Judd–Ofelt theory in order to properly apply it to practical problems. We first present the formalism for calculating the wavefunctions of 4f electronic states in a concise form and then show their application to the calculation and fitting of 4f-4f transition intensities. The potential, limitations and pitfalls of the theory are discussed, and a detailed case study of LaCl3:Er3+ is presented.
Resumo:
According to Bandura (1997) efficacy beliefs are a primary determinant of motivation. Still, very little is known about the processes through which people integrate situational factors to form efficacy beliefs (Myers & Feltz, 2007). The aim of this study was to gain insight into the cognitive construction of subjective group-efficacy beliefs. Only with a sound understanding of those processes is there a sufficient base to derive psychological interventions aimed at group-efficacy beliefs. According to cognitive theories (e.g., Miller, Galanter, & Pribram, 1973) individual group-efficacy beliefs can be seen as the result of a comparison between the demands of a group task and the resources of the performing group. At the center of this comparison are internally represented structures of the group task and plans to perform it. The empirical plausibility of this notion was tested using functional measurement theory (Anderson, 1981). Twenty-three students (M = 23.30 years; SD = 3.39; 35 % females) of the University of Bern repeatedly judged the efficacy of groups in different group tasks. The groups consisted of the subjects and another one to two fictive group members. The latter were manipulated by their value (low, medium, high) in task-relevant abilities. Data obtained from multiple full factorial designs were structured with individuals as second level units and analyzed using mixed linear models. The task-relevant abilities of group members, specified as fixed factors, all had highly significant effects on subjects’ group-efficacy judgments. The effect sizes of the ability factors showed to be dependent on the respective abilities’ importance in a given task. In additive tasks (Steiner, 1972) group resources were integrated in a linear fashion whereas significant interaction between factors was obtained in interdependent tasks. The results also showed that people take into account other group members’ efficacy beliefs when forming their own group-efficacy beliefs. The results support the notion that personal group-efficacy beliefs are obtained by comparing the demands of a task with the performing groups’ resources. Psychological factors such as other team members’ efficacy beliefs are thereby being considered task relevant resources and affect subjective group-efficacy beliefs. This latter finding underlines the adequacy of multidimensional measures. While the validity of collective efficacy measures is usually estimated by how well they predict performances, the results of this study allow for a somewhat internal validity criterion. It is concluded that Information Integration Theory holds potential to further help understand people’s cognitive functioning in sport relevant situations.
Resumo:
So far, social psychology in sport has preliminary focused on team cohesion, and many studies and meta analyses tried to demonstrate a relation between cohesiveness of a team and it's performance. How a team really co-operates and how the individual actions are integrated towards a team action is a question that has received relatively little attention in research. This may, at least in part, be due to a lack of a theoretical framework for collective actions, a dearth that has only recently begun to challenge sport psychologists. In this presentation a framework for a comprehensive theory of teams in sport is outlined and its potential to integrate the following presentations is put up for discussion. Based on a model developed by von Cranach, Ochsenbein and Valach (1986), teams are information processing organisms, and team actions need to be investigated on two levels: the individual team member and the group as an entity. Elements to be considered are the task, the social structure, the information processing structure and the execution structure. Obviously, different task require different social structures, communication and co-ordination. From a cognitivist point of view, internal representations (or mental models) guide the behaviour mainly in situations requiring quick reactions and adaptations, were deliberate or contingency planning are difficult. In sport teams, the collective representation contains the elements of the team situation, that is team task and team members, and of the team processes, that is communication and co-operation. Different meta-perspectives may be distinguished and bear a potential to explain the actions of efficient teams. Cranach, M. von, Ochsenbein, G., & Valach, L. (1986).The group as a self-active system: Outline of a theory of group action. European Journal of Social Psychology, 16, 193-229.
Resumo:
The in-medium physics of heavy quarkonium is an ideal proving ground for our ability to connect knowledge about the fundamental laws of physics to phenomenological predictions. One possible route to take is to attempt a description of heavy quark bound states at finite temperature through a Schrödinger equation with an instantaneous potential. Here we review recent progress in devising a comprehensive approach to define such a potential from first principles QCD and extract its, in general complex, values from non-perturbative lattice QCD simulations. Based on the theory of open quantum systems we will show how to interpret the role of the imaginary part in terms of spatial decoherence by introducing the concept of a stochastic potential. Shortcomings as well as possible paths for improvement are discussed.
Resumo:
Introduction So far, social psychology in sport has preliminary focused on team cohesion, and many studies and meta-analyses tried to demonstrate a relation between cohesiveness of a team and its performance. How a team really co-operates and how the individual actions are integrated towards a team action is a question that has received relatively little attention in research. This may, at least in part, be due to a lack of a theoretical framework for collective actions, a dearth that has only recently begun to challenge sport psychologists. Objectives In this presentation a framework for a comprehensive theory of teams in sport is outlined and its potential to integrate research in the domain of team performance and, more specifically, the following presentations, is put up for discussion. Method Based on a model developed by von Cranach, Ochsenbein and Valach (1986), teams are considered to be information processing organisms, and team actions need to be investigated on two levels: the individual team member and the group as an entity. Elements to be considered are the task, the social structure, the information processing structure and the execution structure. Obviously, different task require different social structures, communication processes and co-ordination of individual movements. Especially in rapid interactive sports planning and execution of movements based on feedback loops are not possible. Deliberate planning may be a solution mainly for offensive actions, whereas defensive actions have to adjust to the opponent team's actions. Consequently, mental representations must be developed to allow a feed-forward regulation of team member's actions. Results and Conclusions Some preliminary findings based on this conceptual framework as well as further consequences for empirical investigations will be presented. References Cranach, M.v., Ochsenbein, G. & Valach, L. (1986). The group as a self-active system: Outline of a theory of group action. European Journal of Social Psychology, 16, 193-229.
Resumo:
We investigate reductions of M-theory beyond twisted tori by allowing the presence of KK6 monopoles (KKO6-planes) compatible with N = 4 supersymmetry in four dimensions. The presence of KKO6-planes proves crucial to achieve full moduli stabilisation as they generate new universal moduli powers in the scalar potential. The resulting gauged supergravities turn out to be compatible with a weak G2 holonomy at N = 1 as well as at some non-supersymmetric AdS4 vacua. The M-theory flux vacua we present here cannot be obtained from ordinary type IIA orientifold reductions including background fluxes, D6-branes (O6-planes) and/or KK5 (KKO5) sources. However, from a four-dimensional point of view, they still admit a description in terms of so-called non-geometric fluxes. In this sense we provide the M-theory interpretation for such non-geometric type IIA flux vacua.
Resumo:
We consider the Schrödinger equation for a relativistic point particle in an external one-dimensional δ-function potential. Using dimensional regularization, we investigate both bound and scattering states, and we obtain results that are consistent with the abstract mathematical theory of self-adjoint extensions of the pseudodifferential operator H=p2+m2−−−−−−−√. Interestingly, this relatively simple system is asymptotically free. In the massless limit, it undergoes dimensional transmutation and it possesses an infrared conformal fixed point. Thus it can be used to illustrate nontrivial concepts of quantum field theory in the simpler framework of relativistic quantum mechanics.
Resumo:
OBJECTIVE Obtaining new details of radial motion of left ventricular (LV) segments using velocity-encoding cardiac MRI. METHODS Cardiac MR examinations were performed on 14 healthy volunteers aged between 19 and 26 years. Cine images for navigator-gated phase contrast velocity mapping were acquired using a black blood segmented κ-space spoiled gradient echo sequence with a temporal resolution of 13.8 ms. Peak systolic and diastolic radial velocities as well as radial velocity curves were obtained for 16 ventricular segments. RESULTS Significant differences among peak radial velocities of basal and mid-ventricular segments have been recorded. Particular patterns of segmental radial velocity curves were also noted. An additional wave of outward radial movement during the phase of rapid ventricular filling, corresponding to the expected timing of the third heart sound, appeared of particular interest. CONCLUSION The technique has allowed visualization of new details of LV radial wall motion. In particular, higher peak systolic radial velocities of anterior and inferior segments are suggestive of a relatively higher dynamics of anteroposterior vs lateral radial motion in systole. Specific patterns of radial motion of other LV segments may provide additional insights into LV mechanics. ADVANCES IN KNOWLEDGE The outward radial movement of LV segments impacted by the blood flow during rapid ventricular filling provides a potential substrate for the third heart sound. A biphasic radial expansion of the basal anteroseptal segment in early diastole is likely to be related to the simultaneous longitudinal LV displacement by the stretched great vessels following repolarization and their close apposition to this segment.
Resumo:
Plants release herbivore-induced volatiles (HIPVs), which can be used as cues by plants, herbivores and natural enemies. Theory predicts that HIPVs may initially have evolved because of their direct benefits for the emitter and were subsequently adopted as infochemicals. Here, we investigated the potential direct benefits of indole, a major HIPV constituent of many plant species and a key defence priming signal in maize. We used indole-deficient maize mutants and synthetic indole at physiologically relevant doses to document the impact of the volatile on the generalist herbivore Spodoptera littoralis. Our experiments demonstrate that indole directly decreases food consumption, plant damage and survival of S. littoralis caterpillars. Surprisingly, exposure to volatile indole increased caterpillar growth. Furthermore, we show that S. littoralis caterpillars and adults consistently avoid indole-producing plants in olfactometer experiments, feeding assays and oviposition trials. Synthesis. Together, these results provide a potential evolutionary trajectory by which the release of a HIPV as a direct defence precedes its use as a cue by herbivores and an alert signal by plants. Furthermore, our experiments show that the effects of a plant secondary metabolite on weight gain and food consumption can diverge in a counterintuitive manner, which implies that larval growth can be a poor proxy for herbivore fitness and plant resistance.