4 resultados para Post-rift exhumation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The neoformation of chlorite and K-white mica in fault rocks from two main faults of the central Catalan Coastal Ranges, the Vallès and the Hospital faults, has allowed us to constrain the P–T conditions during fault evolution using thermodynamic modeling. Crystallization of M1 and M2 muscovite and microcline occured as result of deuteric alteration during the exhumation of the pluton (290 °C > T > 370 °C) in the Permian. After that, three tectonic events have been distinguished. The first tectonic event, attributed to the Mesozoic rifting, is characterized by precipitation of M3 and M4 phengite together with chlorite and calcite C1 at temperatures between 190 and 310 °C. The second tectonic event attributed to the Paleogene compression has only been identified in the Hospital fault with precipitation of low-temperature calcite C2. The shortcut produced during inversion of the Vallès fault was probably the responsible for the lack of neoformed minerals within this fault. Finally, the third tectonic event, which is related to the Neogene extension, is characterized in the Vallès fault by a new generation of chlorite, associated with calcite C4 and laumontite, formed at temperatures between 125 and 190 °C in the absence of K-white mica. Differently, the Hospital fault is characterized by the precipitation of calcite C3 during the syn-rift stage at temperatures around 150 °C and by low-temperature fluids precipitating calcites C5, C6 and PC1 during the post-rift stage. During the two extensional events (Mesozoic and Neogene), faults acted as conduits for hot fluids producing anomalous high geothermal gradients (50 °C/km minimum).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Ivrea–Verbano Zone (IVZ), northern Italy, exposes an attenuated section through the Permian lower crust that records high-temperature metamorphism under lower crustal conditions and a protracted history of extension and exhumation associated partly with the Jurassic opening of the Alpine Tethys ocean. This study presents SHRIMP U–Pb geochronology of rutile from seven granulite facies metapelites from the base of the IVZ, collected from locations spanning ~35 km along the strike of Paleozoic fabrics. Rutile crystallised during Permian high-temperature metamorphism and anatexis, yet all samples give Jurassic rutile U–Pb ages that record cooling through 650–550 °C. Rutile age distributions are dominated by a peak at ~160 Ma, with a subordinate peak at ~175 Ma. Both ~160 and ~175 Ma age populations show excellent agreement between samples, indicating that the two distinctive cooling stages they record were synchronous on a regional scale. The ~175 Ma population is interpreted to record cooling in the footwall of rift-related faults and shear zones, for which widespread activity in the Lower Jurassic has been documented along the western margin of the Adriatic plate. The ~160 Ma age population postdates the activity of all known rift-related structures within the Adriatic margin, but coincides with extensive gabbroic magmatism and exhumation of sub-continental mantle to the floor of the Alpine Tethys, west of the Ivrea Zone. We propose that this ~160 Ma early post-rift age population records regional cooling following episodic heating of the distal Adriatic margin, likely related to extreme lithospheric thinning and associated advection of the asthenosphere to shallow levels. The partial preservation of the ~175 Ma age cluster suggests that the post-rift (~160 Ma) heating pulse was of short duration. The regional consistency of the data presented here, which is in contrast to many other thermochronometers in the IVZ, demonstrates the value of the rutile U–Pb technique for probing the thermal evolution of high-grade metamorphic terrains. In the IVZ, a significant decoupling between Zr-in-rutile temperatures and U–Pb ages of rutile is observed, with the two systems recording events ~120 Ma apart.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe a case of exhumation, performed to investigate the circumstances and cause of death, one year after burial. Post mortem computed tomography (PMCT) revealed a mass in the pharynx. Imaging directed the subsequent forensic autopsy to careful retrieval of a foreign body. Histological analysis revealed a non-cellular composition. The detection of foreign material in the pharynx and its composition indicated accidental, rather than natural death, secondary to choking on food. This unusual case illustrates how post mortem imaging can significantly contribute to forensic investigation and stresses the importance of interdisciplinary collaboration between forensic pathologists and radiologists.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[1] The evolution of the rift shoulder and the sedimentary sequence of the Morondava basin in western Madagascar was mainly influenced by a Permo-Triassic continental failed rift (Karroo rift), and the early Jurassic separation of Madagascar from Africa. Karroo deposits are restricted to a narrow corridor along the basement-basin contact and parts of this contact feature a steep escarpment. Here, apatite fission track (AFT) analysis of a series of both basement and sediment samples across the escarpment reveals the low-temperature evolution of the exhuming Precambrian basement in the rift basin shoulder and the associated thermal evolution of the sedimentary succession. Seven basement and four Karroo sediment samples yield apparent AFT ages between ∼330 and ∼215 Ma and ∼260 and ∼95 Ma, respectively. Partially annealed fission tracks and thermal modeling indicate post-depositional thermal overprinting of both basement and Karroo sediment. Rocks presently exposed in the rift shoulder indicate temperatures of >60°C associated with this reheating whereby the westernmost sample in the sedimentary plain experienced almost complete resetting of the detrital apatite grains at temperatures of about ∼90–100°C. The younging of AFT ages westward indicates activity of faults, re-activating inherited Precambrian structures during Karroo sedimentation. Furthermore, our data suggest onset of final cooling/exhumation linked to (1) the end of Madagascar's drift southward relative to Africa during the Early Cretaceous, (2) activity of the Marion hot spot and associated Late Cretaceous break-up between Madagascar and India, and (3) the collision of India with Eurasia and subsequent re-organization of spreading systems in the Indian Ocean.