50 resultados para Post-human
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Both liver and muscle glycogen stores play a fundamental role in exercise and fatigue, but the effect of different CHO sources on liver glycogen synthesis in humans is unclear. The aim was to compare the effect of maltodextrin (MD) drinks containing galactose, fructose, or glucose on postexercise liver glycogen synthesis.
Resumo:
BACKGROUND: Cryopreserved human blood vessels are important tools in reconstructive surgery. However, patency of frozen/thawed conduits depends largely on the freezing/thawing procedures employed. METHODS: Changes in tone were recorded on rings from human saphenous vein (SV) and used to quantify the degree of cryoinjury after different periods of exposure at room temperature to the cryomedium (Krebs-Henseleit solution containing 1.8M dimethyl sulfoxide and 0.1M sucrose) and after different cooling speeds and thawing rates following storage at -196 degrees C. RESULTS: Without freezing, exposure of SV to the cryomedium for up to 240 min did not modify contractile responses to noradrenaline (NA). Pre-freezing exposure to the cryomedium for 10-120 min attenuated significantly post-thaw maximal contractile responses to NA, endothelin-1 (ET-1) and potassium chloride (KCl) by 30-44%. Exposure for 240 min attenuated post-thaw contractile responses to all tested agents markedly by 62-67%. Optimal post-thaw contractile activity was obtained with SV frozen at about -1.2 degrees C/min and thawed slowly at about 15 degrees C/min. In these SV maximal contractile responses to NA, ET-1 and KCl amounted to 66%, 70% and 60% of that produced by unfrozen controls. Following cryostorage of veins for up to 10 years the responsiveness of vascular smooth muscle to NA was well maintained. CONCLUSION: Cryopreservation allows long-term banking of viable human SV with only minor loss in contractility.
Resumo:
We synthesized recombinant Echinococcus granulosus protoscolex recP29 antigen to be preliminarily assessed by ELISA and immunoblotting. RecP29-serology was carried out on 54 young patients with cystic echinococcosis (CE). Patients were classified into either cured (CCE) (n=40) or non-cured (NCCE) (n=14) CE patients. RecP29 ELISA showed a gradual decrease of antibody concentrations in all CCE cases that were initially (before treatment) seropositive to this antigen (25 out of 40) or that seroconverted following treatment. A complete seronegativity was reached within 3 years post-surgery in all of these cases. Conventional HCF ELISA yielded seronegativity in only 10% of initially recP29-seropositive CCE patients (P=0.086). Likewise, recP29 immunoblotting yielded seronegativity in 93% of 29 out of 40 initially recP29-immunoblot-positive CCE patients after 3 years follow-up, compared with 72% in the HCF immunoblotting (P=0.060). Eleven out of 14 NCCE patients were initially positive by recP29 ELISA, and 10 out of these maintained a marked anti-recP29 antibody reactivity until the endpoint of the follow-up period. All 14 NCCE cases were initially seropositive by recP29 immunoblotting, and 13 cases remained seropositive until the end of the study. Thus, recombinant P29 protein appears prognostically useful for monitoring those post-surgical CE cases with an initial seropositivity to this marker.
Resumo:
Human auditory nerve afferents consist of two separate systems; one is represented by the large type I cells innervating the inner hair cells and the other one by the small type II cells innervating the outer hair cells. Type I spiral ganglion neurons (SGNs) constitute 96% of the afferent nerve population and, in contrast to other mammals, their soma and pre- and post-somatic segments are unmyelinated. Type II nerve soma and fibers are unmyelinated. Histopathology and clinical experience imply that human SGNs can persist electrically excitable without dendrites, thus lacking connection to the organ of Corti. The biological background to this phenomenon remains elusive. We analyzed the pre- and post-somatic segments of the type I human SGNs using immunohistochemistry and transmission electron microscopy (TEM) in normal and pathological conditions. These segments were found surrounded by non-myelinated Schwann cells (NMSCs) showing strong intracellular expression of laminin-β2/collagen IV. These cells also bordered the perikaryal entry zone and disclosed surface rugosities outlined by a folded basement membrane (BM) expressing laminin-β2 and collagen IV. It is presumed that human large SGNs are demarcated by three cell categories: (a) myelinated Schwann cells, (b) NMSCs and (c) satellite glial cells (SGCs). Their BMs express laminin-β2/collagen IV and reaches the BM of the sensory epithelium at the habenula perforata. We speculate that the NMSCs protect SGNs from further degeneration following dendrite loss. It may give further explanation why SGNs can persist as electrically excitable monopolar cells even after long-time deafness, a blessing for the deaf treated with cochlear implantation.
Resumo:
G(M1)-gangliosidosis is a lysosomal storage disorder caused by a deficiency of ss-galactosidase activity. Human GM1-gangliosidosis has been classified into three forms according to the age of clinical onset and specific biochemical parameters. In the present study, a canine model for type II late infantile human GM1-gangliosidosis was investigated 'in vitro' in detail. For a better understanding of the molecular pathogenesis underlying G(M1)-gangliosidosis the study focused on the analysis of the molecular events and subsequent intracellular protein trafficking of beta-galactosidase. In the canine model the genetic defect results in exclusion or inclusion of exon 15 in the mRNA transcripts and to translation of two mutant precursor proteins. Intracellular localization, processing and enzymatic activity of these mutant proteins were investigated. The obtained results suggested that the beta-galactosidase C-terminus encoded by exons 15 and 16 is necessary for correct C-terminal proteolytic processing and enzyme activity but does not affect the correct routing to the lysosomes. Both mutant protein precursors are enzymatically inactive, but are transported to the lysosomes clearly indicating that the amino acid sequences encoded by exons 15 and 16 are necessary for correct folding and association with protective protein/cathepsin A, whereas the routing to the lysosomes is not influenced. Thus, the investigated canine model is an appropriate animal model for the human late infantile form and represents a versatile system to test gene therapeutic approaches for human and canine G(M1)-gangliosidosis.
Resumo:
Growth hormone insensitivity syndrome (GHIS) is a rare cause of growth retardation characterized by high serum GH levels, and low serum insulin-like growth factor I (IGF-I) levels associated with a genetic defect of the GH receptor (GHR) as well post-GHR signaling pathway. Based on clinical, as well as biochemical characteristics, GHIS can be genetically classified as classical/Laron's syndrome and nonclassical/atypical GHIS. Recombinant human IGF-I (rhIGF-I) treatment is effective in promoting growth in subjects who have GHIS. Further, pharmacological studies of a IGF-I compound containing a 1:1 molar complex of rhIGF-I and rhIGF-binding protein-3 (BP-3) demonstrated that the complex was effective in increasing levels of circulating total and free IGF-I and that the administration in patients with GHIS should be safe, well-tolerated and more effective than rhIGF-I on its own.
Resumo:
A global metabolic profiling methodology based on gas chromatography coupled to time-of-flight mass spectrometry (GC-TOFMS) for human plasma was applied to a human exercise study focused on the effects of beverages containing glucose, galactose, or fructose taken after exercise and throughout a recovery period of 6 h and 45 min. One group of 10 well trained male cyclists performed 3 experimental sessions on separate days (randomized, single center). After performing a standardized depletion protocol on a bicycle, subjects consumed one of three different beverages: maltodextrin (MD)+glucose (2:1 ratio), MD+galactose (2:1), and MD+fructose (2:1), consumed at an average of 1.25 g of carbohydrate (CHO) ingested per minute. Blood was taken straight after exercise and every 45 min within the recovery phase. With the resulting blood plasma, insulin, free fatty acid (FFA) profile, glucose, and GC-TOFMS global metabolic profiling measurements were performed. The resulting profiling data was able to match the results obtained from the other clinical measurements with the addition of being able to follow many different metabolites throughout the recovery period. The data quality was assessed, with all the labelled internal standards yielding values of <15% CV for all samples (n=335), apart from the labelled sucrose which gave a value of 15.19%. Differences between recovery treatments including the appearance of galactonic acid from the galactose based beverage were also highlighted.
Resumo:
Host determinants of HIV-1 viral tropism include factors from producer cells that affect the efficiency of productive infection and factors in target cells that block infection after viral entry. TRIM5 restricts HIV-1 infection at an early post-entry step through a mechanism associated with rapid disassembly of the retroviral capsid. Topoisomerase I (TOP1) appears to play a role in HIV-1 viral tropism by incorporating into or otherwise modulating virions affecting the efficiency of a post-entry step, as the expression of human TOP1 in African Green Monkey (AGM) virion-producing cells increased the infectivity of progeny virions by five-fold. This infectivity enhancement required human TOP1 residues 236 and 237 as their replacement with the AGM counterpart residues abolished the infectivity enhancement. Our previous studies showed that TOP1 interacts with BTBD1 and BTBD2, two proteins which co-localize with the TRIM5 splice variant TRIM5 in cytoplasmic bodies. Because BTBD1 and BTBD2 interact with one HIV-1 viral tropism factor, TOP1, and co-localize with a splice variant of another, we investigated the potential involvement of BTBD1 and BTBD2 in HIV-1 restriction.