5 resultados para Post-feeding Larval Dispersal
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Abstract Xyleborini are a species-rich tribe of ambrosia beetles, which are haplodiploid and typically mate among siblings within their natal brood chamber. Several characteristics of this tribe would predict the evolution of higher levels of sociality: high genetic relatedness within galleries due to inbreeding, high costs of dispersal and the potential benefit of cooperation in brood care within the natal gallery (e.g. by fungus gardening, gallery extension, offspring feeding and cleaning). However, information on the social system of these beetles is very limited. We examined the potential for cooperative breeding in Xyleborinus saxeseni by monitoring dispersal in relation to brood size and composition. Results show that adult female offspring delay dispersal despite dispersal opportunities, and apparently some females never disperse. The femalesâ?? decision to stay seems to depend on the presence of eggs and dependent siblings. We found no indication that female offspring reproduce in their natal gallery, as colonies with many mature daughters do not contain more eggs than those with few or no daughters. There is a significant positive relationship between the number of females present and the number of dependent siblings (but not eggs), which suggests that cooperative brood care of female offspring raises colony productivity by improving survival rates of immatures. Our results suggest that cooperative breeding is likely to occur in X. saxeseni and possibly other xyleborine species. We argue that a closer look at sociality within this tribe may yield important information on the factors determining the evolution of cooperative breeding and advanced social organization.
Resumo:
Parallel phenotypic divergence in replicated adaptive radiations could either result from parallel genetic divergence in response to similar divergent selec- tion regimes or from equivalent phenotypically plastic response to the repeated occurrence of contrasting environments. In post-glacial fish, repli- cated divergence in phenotypes along the benthic-limnetic habitat axis is commonly observed. Here, we use two benthic-limnetic species pairs of whitefish from two Swiss lakes, raised in a common garden design, with reciprocal food treatments in one species pair, to experimentally measure whether feeding efficiency on benthic prey has a genetic basis or whether it underlies phenotypic plasticity (or both). To do so, we offered experimental fish mosquito larvae, partially burried in sand, and measured multiple feed- ing efficiency variables. Our results reveal both, genetic divergence as well as phenotypically plastic divergence in feeding efficiency, with the pheno- typically benthic species raised on benthic food being the most efficient forager on benthic prey. This indicates that both, divergent natural selection on genetically heritable traits and adaptive phenotypic plasticity, are likely important mechanisms driving phenotypic divergence in adaptive radiation.
Resumo:
Agri-environmental schemes involving organic farming or set-aside management aim at promoting biodiversity and restoring ecosystem functioning in agrarian landscapes. Application of pesticides in these crop fields is strongly regulated facilitating the spread of weeds but also allowing for the establishment of endangered herbs and a variety of animals.Recent studies found gastropods and earthworms to be legitimate dispersers of seeds of wild plants. We assumed that both groups also playa significant role in the spread and establishment of wild plants within crop fields. Therefore, we are conducting a series of experiments in three different study systems on (1) the role of earthworms and gastropods as dispersers of rare herbs and weeds in an organic rye field in Germany, (2) the seed feeding behavior of gastropods of plants sown in fallow ground in Switzerland, and (3) weed dispersal in irrigated rice fields by golden apple snails in the Philippines.
Resumo:
Habitat fragmentation strongly affects species distribution and abundance. However, mechanisms underlying fragmentation effects often remain unresolved. Potential mechanisms are (1) reduced dispersal of a species or (2) altered species interactions in fragmented landscapes. We studied if abundance of the spider-hunting and cavity-nesting wasp Trypoxylon figulus Linnaeus (Hymenoptera: Crabronidae) is affected by fragmentation, and then tested for any effect of larval food (bottom up regulation) and parasitism (top down regulation). Trap nests of T. figulus were studied in 30 agricultural landscapes of the Swiss Plateau. The sites varied in the level of isolation from forest (adjacent, in the open landscape but connected, isolated) and in the amount of woody habitat (from 4 % to 74 %). We recorded wasp abundance (number of occupied reed tubes), determined parasitism of brood cells and analysed the diversity and abundance of spiders that were deposited as larval food. Abundances of T. figulus were negatively related to forest cover in the landscape. In addition, T. figulus abundances were highest at forest edges, reduced by 33.1% in connected sites and by 79.4% in isolated sites. The mean number of spiders per brood cell was lowest in isolated sites. Nevertheless, structural equation modelling revealed that this did not directly determine wasp abundance. Parasitism was neither related to the amount of woody habitat nor to isolation and did not change with host density. Therefore, our study showed that the abundance of T. figulus cannot be fully explained by the studied trophic interactions. Further factors, such as dispersal and habitat preference, seem to play a role in the population dynamics of this widespread secondary carnivore in agricultural landscapes.
Resumo:
Theory on plant succession predicts a temporal increase in the complexity of spatial community structure and of competitive interactions: initially random occurrences of early colonising species shift towards spatially and competitively structured plant associations in later successional stages. Here we use long-term data on early plant succession in a German post mining area to disentangle the importance of random colonisation, habitat filtering, and competition on the temporal and spatial development of plant community structure. We used species co-occurrence analysis and a recently developed method for assessing competitive strength and hierarchies (transitive versus intransitive competitive orders) in multispecies communities. We found that species turnover decreased through time within interaction neighbourhoods, but increased through time outside interaction neighbourhoods. Successional change did not lead to modular community structure. After accounting for species richness effects, the strength of competitive interactions and the proportion of transitive competitive hierarchies increased through time. Although effects of habitat filtering were weak, random colonization and subsequent competitive interactions had strong effects on community structure. Because competitive strength and transitivity were poorly correlated with soil characteristics, there was little evidence for context dependent competitive strength associated with intransitive competitive hierarchies.