16 resultados para Positioning System

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

What's known on the subject? And what does the study add? We have previously shown that percutaneous radiofrequency ablation guided by image-fusion technology allows for precise needle placement with real time ultrasound superimposed with pre-loaded imaging, removing the need for real-time CT or MR guidance. Emerging technology also allows real-time tracking of a treatment needle within an organ in a virtually created 3D format. To our knowledge, this is the first study utilising a sophisticated ultrasound-based navigation system that uses both image-fusion and real-time probe-tracking technologies for in-vivo renal ablative intervention.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Indoor positioning has attracted considerable attention for decades due to the increasing demands for location based services. In the past years, although numerous methods have been proposed for indoor positioning, it is still challenging to find a convincing solution that combines high positioning accuracy and ease of deployment. Radio-based indoor positioning has emerged as a dominant method due to its ubiquitousness, especially for WiFi. RSSI (Received Signal Strength Indicator) has been investigated in the area of indoor positioning for decades. However, it is prone to multipath propagation and hence fingerprinting has become the most commonly used method for indoor positioning using RSSI. The drawback of fingerprinting is that it requires intensive labour efforts to calibrate the radio map prior to experiments, which makes the deployment of the positioning system very time consuming. Using time information as another way for radio-based indoor positioning is challenged by time synchronization among anchor nodes and timestamp accuracy. Besides radio-based positioning methods, intensive research has been conducted to make use of inertial sensors for indoor tracking due to the fast developments of smartphones. However, these methods are normally prone to accumulative errors and might not be available for some applications, such as passive positioning. This thesis focuses on network-based indoor positioning and tracking systems, mainly for passive positioning, which does not require the participation of targets in the positioning process. To achieve high positioning accuracy, we work on some information of radio signals from physical-layer processing, such as timestamps and channel information. The contributions in this thesis can be divided into two parts: time-based positioning and channel information based positioning. First, for time-based indoor positioning (especially for narrow-band signals), we address challenges for compensating synchronization offsets among anchor nodes, designing timestamps with high resolution, and developing accurate positioning methods. Second, we work on range-based positioning methods with channel information to passively locate and track WiFi targets. Targeting less efforts for deployment, we work on range-based methods, which require much less calibration efforts than fingerprinting. By designing some novel enhanced methods for both ranging and positioning (including trilateration for stationary targets and particle filter for mobile targets), we are able to locate WiFi targets with high accuracy solely relying on radio signals and our proposed enhanced particle filter significantly outperforms the other commonly used range-based positioning algorithms, e.g., a traditional particle filter, extended Kalman filter and trilateration algorithms. In addition to using radio signals for passive positioning, we propose a second enhanced particle filter for active positioning to fuse inertial sensor and channel information to track indoor targets, which achieves higher tracking accuracy than tracking methods solely relying on either radio signals or inertial sensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The accuracy of Global Positioning System (GPS) time series is degraded by the presence of offsets. To assess the effectiveness of methods that detect and remove these offsets, we designed and managed the Detection of Offsets in GPS Experiment. We simulated time series that mimicked realistic GPS data consisting of a velocity component, offsets, white and flicker noises (1/f spectrum noises) composed in an additive model. The data set was made available to the GPS analysis community without revealing the offsets, and several groups conducted blind tests with a range of detection approaches. The results show that, at present, manual methods (where offsets are hand picked) almost always give better results than automated or semi‒automated methods (two automated methods give quite similar velocity bias as the best manual solutions). For instance, the fifth percentile range (5% to 95%) in velocity bias for automated approaches is equal to 4.2 mm/year (most commonly ±0.4 mm/yr from the truth), whereas it is equal to 1.8 mm/yr for the manual solutions (most commonly 0.2 mm/yr from the truth). The magnitude of offsets detectable by manual solutions is smaller than for automated solutions, with the smallest detectable offset for the best manual and automatic solutions equal to 5 mm and 8 mm, respectively. Assuming the simulated time series noise levels are representative of real GPS time series, robust geophysical interpretation of individual site velocities lower than 0.2–0.4 mm/yr is therefore certainly not robust, although a limit of nearer 1 mm/yr would be a more conservative choice. Further work to improve offset detection in GPS coordinates time series is required before we can routinely interpret sub‒mm/yr velocities for single GPS stations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Time series of geocenter coordinates were determined with data of two global navigation satellite systems (GNSSs), namely the U.S. GPS (Global Positioning System) and the Russian GLONASS (Global’naya Nawigatsionnaya Sputnikowaya Sistema). The data was recorded in the years 2008–2011 by a global network of 92 permanently observing GPS/GLONASS receivers. Two types of daily solutions were generated independently for each GNSS, one including the estimation of geocenter coordinates and one without these parameters. A fair agreement for GPS and GLONASS was found in the geocenter x- and y-coordinate series. Our tests, however, clearly reveal artifacts in the z-component determined with the GLONASS data. Large periodic excursions in the GLONASS geocenter z-coordinates of about 40 cm peak-to-peak are related to the maximum elevation angles of the Sun above/below the orbital planes of the satellite system and thus have a period of about 4 months (third of a year). A detailed analysis revealed that the artifacts are almost uniquely governed by the differences of the estimates of direct solar radiation pressure (SRP) in the two solution series (with and without geocenter estimation). A simple formula is derived, describing the relation between the geocenter z-coordinate and the corresponding parameter of the SRP. The effect can be explained by first-order perturbation theory of celestial mechanics. The theory also predicts a heavy impact on the GNSS-derived geocenter if once-per-revolution SRP parameters are estimated in the direction of the satellite’s solar panel axis. Specific experiments using GPS observations revealed that this is indeed the case. Although the main focus of this article is on GNSS, the theory developed is applicable to all satellite observing techniques. We applied the theory to satellite laser ranging (SLR) solutions using LAGEOS. It turns out that the correlation between geocenter and SRP parameters is not a critical issue for the SLR solutions. The reasons are threefold: The direct SRP is about a factor of 30–40 smaller for typical geodetic SLR satellites than for GNSS satellites, allowing it in most cases to not solve for SRP parameters (ruling out the correlation between these parameters and the geocenter coordinates); the orbital arc length of 7 days (which is typically used in SLR analysis) contains more than 50 revolutions of the LAGEOS satellites as compared to about two revolutions of GNSS satellites for the daily arcs used in GNSS analysis; the orbit geometry is not as critical for LAGEOS as for GNSS satellites, because the elevation angle of the Sun w.r.t. the orbital plane is usually significantly changing over 7 days.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Passive positioning systems produce user location information for third-party providers of positioning services. Since the tracked wireless devices do not participate in the positioning process, passive positioning can only rely on simple, measurable radio signal parameters, such as timing or power information. In this work, we provide a passive tracking system for WiFi signals with an enhanced particle filter using fine-grained power-based ranging. Our proposed particle filter provides an improved likelihood function on observation parameters and is equipped with a modified coordinated turn model to address the challenges in a passive positioning system. The anchor nodes for WiFi signal sniffing and target positioning use software defined radio techniques to extract channel state information to mitigate multipath effects. By combining the enhanced particle filter and a set of enhanced ranging methods, our system can track mobile targets with an accuracy of 1.5m for 50% and 2.3m for 90% in a complex indoor environment. Our proposed particle filter significantly outperforms the typical bootstrap particle filter, extended Kalman filter and trilateration algorithms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first operations at the new High-altitude Maïdo Observatory at La Réunion began in 2013. The Maïdo Lidar Calibration Campaign (MALICCA) was organized there in April 2013 and has focused on the validation of the thermodynamic parameters (temperature, water vapor, and wind) measured with many instruments including the new very large lidar for water vapor and temperature profiles. The aim of this publication consists of providing an overview of the different instruments deployed during this campaign and their status, some of the targeted scientific questions and associated instrumental issues. Some specific detailed studies for some individual techniques were addressed elsewhere. This study shows that temperature profiles were obtained from the ground to the mesopause (80 km) thanks to the lidar and regular meteorological balloon-borne sondes with an overlap range showing good agreement. Water vapor is also monitored from the ground to the mesopause by using the Raman lidar and microwave techniques. Both techniques need to be pushed to their limit to reduce the missing range in the lower stratosphere. Total columns obtained from global positioning system or spectrometers are valuable for checking the calibration and ensuring vertical continuity. The lidar can also provide the vertical cloud structure that is a valuable complementary piece of information when investigating the water vapor cycle. Finally, wind vertical profiles, which were obtained from sondes, are now also retrieved at Maïdo from the newly implemented microwave technique and the lidar. Stable calibrations as well as a small-scale dynamical structure are required to monitor the thermodynamic state of the middle atmosphere, ensure validation of satellite sensors, study the transport of water vapor in the vicinity of the tropical tropopause and study their link with cirrus clouds and cyclones and the impact of small-scale dynamics (gravity waves) and their link with the mean state of the mesosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous bacterial pathogens subvert cellular functions of eukaryotic host cells by the injection of effector proteins via dedicated secretion systems. The type IV secretion system (T4SS) effector protein BepA from Bartonella henselae is composed of an N-terminal Fic domain and a C-terminal Bartonella intracellular delivery domain, the latter being responsible for T4SS-mediated translocation into host cells. A proteolysis resistant fragment (residues 10-302) that includes the Fic domain shows autoadenylylation activity and adenylyl transfer onto Hela cell extract proteins as demonstrated by autoradiography on incubation with α-[(32)P]-ATP. Its crystal structure, determined to 2.9-Å resolution by the SeMet-SAD method, exhibits the canonical Fic fold including the HPFxxGNGRxxR signature motif with several elaborations in loop regions and an additional β-rich domain at the C-terminus. On crystal soaking with ATP/Mg(2+), additional electron density indicated the presence of a PP(i) /Mg(2+) moiety, the side product of the adenylylation reaction, in the anion binding nest of the signature motif. On the basis of this information and that of the recent structure of IbpA(Fic2) in complex with the eukaryotic target protein Cdc42, we present a detailed model for the ternary complex of Fic with the two substrates, ATP/Mg(2+) and target tyrosine. The model is consistent with an in-line nucleophilic attack of the deprotonated side-chain hydroxyl group onto the α-phosphorus of the nucleotide to accomplish AMP transfer. Furthermore, a general, sequence-independent mechanism of target positioning through antiparallel β-strand interactions between enzyme and target is suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new system for computer-aided corrective surgery of the jaws has been developed and introduced clinically. It combines three-dimensional (3-D) surgical planning with conventional dental occlusion planning. The developed software allows simulating the surgical correction on virtual 3-D models of the facial skeleton generated from computed tomography (CT) scans. Surgery planning and simulation include dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and segment repositioning. By coupling the software with a tracking system and with the help of a special registration procedure, we are able to acquire dental occlusion plans from plaster model mounts. Upon completion of the surgical plan, the setup is used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with the help of a display showing jaw positions and 3-D positioning guides updated in real time during the surgical procedure. The proposed approach offers the advantages of 3-D visualization and tracking technology without sacrificing long-proven cast-based techniques for dental occlusion evaluation. The system has been applied on one patient. Throughout this procedure, we have experienced improved assessment of pathology, increased precision, and augmented control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study deals with indoor positioning using GSM radio, which has the distinct advantage of wide coverage over other wireless technologies. In particular, we focus on passive localization systems that are able to achieve high localization accuracy without any prior knowledge of the indoor environment or the tracking device radio settings. In order to overcome these challenges, newly proposed localization algorithms based on the exploitation of the received signal strength (RSS) are proposed. We explore the effects of non-line-of-sight communication links, opening and closing of doors, and human mobility on RSS measurements and localization accuracy. We have implemented the proposed algorithms on top of software defined radio systems and carried out detailed empirical indoor experiments. The performance results show that the proposed solutions are accurate with average localization errors between 2.4 and 3.2 meters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Capital cities that are not the economic centers of their nations - so-called secondary capital cities - tend to be overlooked in the field of political science. Consequentially, there is a lack of research and resulting theory describing their political economy and their formulated policies. This paper analyzes how secondary capital cities try to develop and position themselves through the formulation of locational policies. By linking three different theoretical strands - the Regional Innovation System approach, the concept of locational policies, and the regime perspective - this paper proposes a framework to study the the economic and political dynamics in secondary capital cites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indoor localization systems become more interesting for researchers because of the attractiveness of business cases in various application fields. A WiFi-based passive localization system can provide user location information to third-party providers of positioning services. However, indoor localization techniques are prone to multipath and Non-Line Of Sight (NLOS) propagation, which lead to significant performance degradation. To overcome these problems, we provide a passive localization system for WiFi targets with several improved algorithms for localization. Through Software Defined Radio (SDR) techniques, we extract Channel Impulse Response (CIR) information at the physical layer. CIR is later adopted to mitigate the multipath fading problem. We propose to use a Nonlinear Regression (NLR) method to relate the filtered power information to propagation distances, which significantly improves the ranging accuracy compared to the commonly used log-distance path loss model. To mitigate the influence of ranging errors, a new trilateration algorithm is designed as well by combining Weighted Centroid and Constrained Weighted Least Square (WC-CWLS) algorithms. Experiment results show that our algorithm is robust against ranging errors and outperforms the linear least square algorithm and weighted centroid algorithm.