4 resultados para Portable architecture. Reassemblable structure. Design process

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8 μm) or nano (237±98 nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To examine variability in outcome and resource use between ICUs. Secondary aims: to assess whether outcome and resource use are related to ICU structure and process, to explore factors associated with efficient resource use. DESIGN AND SETTING: Cohort study, based on the SAPS 3 database in 275 ICUs worldwide. PATIENTS: 16,560 adults. MEASUREMENTS AND RESULTS: Outcome was defined by standardized mortality rate (SMR). Standardized resource use (SRU) was calculated based on length of stay in the ICU, adjusted for severity of acute illness. Each unit was assigned to one of four groups: "most efficient" (SMR and SRU < median); "least efficient" (SMR, SRU > median); "overachieving" (low SMR, high SRU), "underachieving" (high SMR, low SRU). Univariate analysis and stepwise logistic regression were used to test for factors separating "most" from "least efficient" units. Overall median SMR was 1.00 (IQR 0.77-1.28) and SRU 1.07 (0.76-1.58). There were 91 "most efficient", 91 "least efficient", 47 "overachieving", and 46 "underachieving" ICUs. Number of physicians, of full-time specialists, and of nurses per bed, clinical rounds, availability of physicians, presence of emergency department, and geographical region were significant in univariate analysis. In multivariate analysis only interprofessional rounds, emergency department, and geographical region entered the model as significant. CONCLUSIONS: Despite considerable variability in outcome and resource use only few factors of ICU structure and process were associated with efficient use of ICU. This suggests that other confounding factors play an important role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Sensor-based recordings of human movements are becoming increasingly important for the assessment of motor symptoms in neurological disorders beyond rehabilitative purposes. ASSESS MS is a movement recording and analysis system being developed to automate the classification of motor dysfunction in patients with multiple sclerosis (MS) using depth-sensing computer vision. It aims to provide a more consistent and finer-grained measurement of motor dysfunction than currently possible. Objective: To test the usability and acceptability of ASSESS MS with health professionals and patients with MS. Methods: A prospective, mixed-methods study was carried out at 3 centers. After a 1-hour training session, a convenience sample of 12 health professionals (6 neurologists and 6 nurses) used ASSESS MS to capture recordings of standardized movements performed by 51 volunteer patients. Metrics for effectiveness, efficiency, and acceptability were defined and used to analyze data captured by ASSESS MS, video recordings of each examination, feedback questionnaires, and follow-up interviews. Results: All health professionals were able to complete recordings using ASSESS MS, achieving high levels of standardization on 3 of 4 metrics (movement performance, lateral positioning, and clear camera view but not distance positioning). Results were unaffected by patients’ level of physical or cognitive disability. ASSESS MS was perceived as easy to use by both patients and health professionals with high scores on the Likert-scale questions and positive interview commentary. ASSESS MS was highly acceptable to patients on all dimensions considered, including attitudes to future use, interaction (with health professionals), and overall perceptions of ASSESS MS. Health professionals also accepted ASSESS MS, but with greater ambivalence arising from the need to alter patient interaction styles. There was little variation in results across participating centers, and no differences between neurologists and nurses. Conclusions: In typical clinical settings, ASSESS MS is usable and acceptable to both patients and health professionals, generating data of a quality suitable for clinical analysis. An iterative design process appears to have been successful in accounting for factors that permit ASSESS MS to be used by a range of health professionals in new settings with minimal training. The study shows the potential of shifting ubiquitous sensing technologies from research into the clinic through a design approach that gives appropriate attention to the clinic environment.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

OBJECTIVE: During postnatal development, mammalian articular cartilage acts as a surface growth plate for the underlying epiphyseal bone. Concomitantly, it undergoes a fundamental process of structural reorganization from an immature isotropic to a mature (adult) anisotropic architecture. However, the mechanism underlying this structural transformation is unknown. It could involve either an internal remodelling process, or complete resorption followed by tissue neoformation. The aim of this study was to establish which of these two alternative tissue reorganization mechanisms is physiologically operative. We also wished to pinpoint the articular cartilage source of the stem cells for clonal expansion and the zonal location of the chondrocyte pool with high proliferative activity. METHODS: The New Zealand white rabbit served as our animal model. The analysis was confined to the high-weight-bearing (central) areas of the medial and lateral femoral condyles. After birth, the articular cartilage layer was evaluated morphologically at monthly intervals from the first to the eighth postnatal month, when this species attains skeletal maturity. The overall height of the articular cartilage layer at each juncture was measured. The growth performance of the articular cartilage layer was assessed by calcein labelling, which permitted an estimation of the daily growth rate of the epiphyseal bone and its monthly length-gain. The slowly proliferating stem-cell pool was identified immunohistochemically (after labelling with bromodeoxyuridine), and the rapidly proliferating chondrocyte population by autoradiography (after labelling with (3)H-thymidine). RESULTS: The growth activity of the articular cartilage layer was highest 1 month after birth. It declined precipitously between the first and third months, and ceased between the third and fourth months, when the animal enters puberty. The structural maturation of the articular cartilage layer followed a corresponding temporal trend. During the first 3 months, when the articular cartilage layer is undergoing structural reorganization, the net length-gain in the epiphyseal bone exceeded the height of the articular cartilage layer. This finding indicates that the postnatal reorganization of articular cartilage from an immature isotropic to a mature anisotropic structure is not achieved by a process of internal remodelling, but by the resorption and neoformation of all zones except the most superficial (stem-cell) one. The superficial zone was found to consist of slowly dividing stem cells with bidirectional mitotic activity. In the horizontal direction, this zone furnishes new stem cells that replenish the pool and effect a lateral expansion of the articular cartilage layer. In the vertical direction, the superficial zone supplies the rapidly dividing, transit-amplifying daughter-cell pool that feeds the transitional and upper radial zones during the postnatal growth phase of the articular cartilage layer. CONCLUSIONS: During postnatal development, mammalian articular cartilage fulfils a dual function, viz., it acts not only as an articulating layer but also as a surface growth plate. In the lapine model, this growth activity ceases at puberty (3-4 months of age), whereas that of the true (metaphyseal) growth plate continues until the time of skeletal maturity (8 months). Hence, the two structures are regulated independently. The structural maturation of the articular cartilage layer coincides temporally with the cessation of its growth activity - for the radial expansion and remodelling of the epiphyseal bone - and with sexual maturation. That articular cartilage is physiologically reorganized by a process of tissue resorption and neoformation, rather than by one of internal remodelling, has important implications for the functional engineering and repair of articular cartilage tissue.