49 resultados para Population Genetic Structure
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Detecting small amounts of genetic subdivision across geographic space remains a persistent challenge. Often a failure to detect genetic structure is mistaken for evidence of panmixia, when more powerful statistical tests may uncover evidence for subtle geographic differentiation. Such slight subdivision can be demographically and evolutionarily important as well as being critical for management decisions. We introduce here a method, called spatial analysis of shared alleles (SAShA), that detects geographically restricted alleles by comparing the spatial arrangement of allelic co-occurrences with the expectation under panmixia. The approach is allele-based and spatially explicit, eliminating the loss of statistical power that can occur with user-defined populations and statistical averaging within populations. Using simulated data sets generated under a stepping-stone model of gene flow, we show that this method outperforms spatial autocorrelation (SA) and UST under common real-world conditions: at relatively high migration rates when diversity is moderate or high, especially when sampling is poor. We then use this method to show clear differences in the genetic patterns of 2 nearshore Pacific mollusks, Tegula funebralis (5 Chlorostoma funebralis) and Katharina tunicata, whose overall patterns of within-species differentiation are similar according to traditional population genetics analyses. SAShA meaningfully complements UST/FST, SA, and other existing geographic genetic analyses and is especially appropriate for evaluating species with high gene flow and subtle genetic differentiation.
Resumo:
Background: Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results: Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (R(ST) = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (R(ST) = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (R(ST) = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m similar to 0.094 - 0.097) in the Volta populations. Conclusions: This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view.
Resumo:
Cryptic species, i.e. species that are morphologically hard to distinguish, have been detected repeatedly in various taxa and ecosystems. In order to evaluate the importance of this finding, we have to know in how far cryptic species differ in various aspects of their biology. The amphipod Gammarus fossarum is a key invertebrate in freshwater streams and contains several cryptic species. We examined the population genetic structure, genetic diversity and demographic history of two of them (type A and type B) using microsatellite markers and asked whether they show significant differences. We present results of population genetic analyses based on a total of 37 populations from the headwaters of two major European drainages, Rhine and Rhone. We found that, in both species, genetic diversity was geographically structured among and within drainages. For type A in the Rhine and type B in the Rhone, we detected significant patterns of isolation by distance. The increase of genetic differentiation with geographical distance, however, was much higher in type A than in type B. This result indicates substantial interspecific differences in population history and/or the extent of current gene flow between populations. In the Rhine, type B does not show evidence of isolation by distance, and population differentiation is relatively low across hundreds of kilometres. The majority of these populations also show signatures of recent bottlenecks. These patterns are consistent with a recent expansion of type B into the Rhine drainage. In summary, our results suggest considerable and previously unrecognized interspecific differences in the genetic structure of these cryptic keystone species.
Resumo:
The genetic structure and demography of local populations is tightly linked to the rate and scale of dispersal. Dispersal parameters are notoriously difficult to determine in the field, and remain often completely unknown for smaller organisms. In this study, we investigate spatial and temporal genetic structure in relation to dispersal patterns among local populations of the probably most abundant European mammals, the common vole (Microtus arvalis). Voles were studied in six natural populations at distances of 0.4-2.5 km in three different seasons (fall, spring, summer) corresponding to different life-history stages. Field observations provided no direct evidence for movements of individuals between populations. The analysis of 10 microsatellite markers revealed a persistent overall genetic structure among populations of 2.9%, 2.5% and 3% FST in the respective season. Pairwise comparisons showed that even the closest populations were significantly differentiated from each other in each season, but there was no evidence for temporal differentiation within populations or isolation by distance among populations. Despite significant genetic structure, assignment analyses identified a relatively high proportion of individuals as being immigrants for the population where they were captured. The immigration rate was not significantly lower for females than for males. We suggest that a generally low and sex-dependent effective dispersal rate as the consequence of only few immigrants reproducing successfully in the new populations together with the social structure within populations may explain the maintenance of genetic differentiation among populations despite migration.
Resumo:
European annual species of the genus Rhinanthus often exhibit seasonal ecotypic variation, a phenomenon also known from related genera of hemiparasitic Orobanchaceae. Populations with different flowering times exist, correlated with differences in a number of morphological characters. The present study evaluates the correlation of morphological characters and genetic differentiation of populations of Rhinanthus alectorolophus. Thirty-nine populations of three different subspecies from southwestern Germany were sampled. A total of 798 individuals were used for morphological analyses and 187 of these for AFLP analyses. Principal component analysis showed that morphological variation is mostly continuous. In a discriminant analysis based on morphological characters, only 89.7 % of all individuals were correctly assigned to their previously determined subspecies, indicating that subspecies identification is ambiguous for some populations. Using AFLP data and Bayesian assignment analysis, the sampled individuals could be grouped in three genetic clusters which do not correspond to the three subspecies. Instead, the clustering shows a clear geographic pattern and a Mantel test likewise revealed a significant correlation between genetic and geographic distances. Correlations of genetic distances with differences in morphological characters were weak and mostly insignificant. The results indicate that the subspecies of R. alectorolophus do not form discrete entities and that the character combinations distinguishing them are homoplastic.
Resumo:
Conspecific aggregation of waterfowl in winter is a common example of animal flocking behaviour, yet patterns of relatedness and temporal substructure in such social groups remain poorly understood even in common species. A previous study based on mark-recapture data showed that Tufted Ducks Aythya fuligula caught on the same day were re-caught together in subsequent winters more often than expected by chance, suggesting stable assortments of ‘socially familiar’ individuals between wintering periods. The genetic relationships within these social groups were not clear. Based on 191 individuals genotyped at 10 microsatellite markers, we investigated the temporal genetic structure and patterns of relatedness among wintering Tufted Ducks at Lake Sempach, Switzerland, in two consecutive winters. We found no evidence of genetic differentiation between temporal groups within or between winters. The average levels of relatedness in temporal groups were low and not higher than expected in random assortments of individuals. However, Mantel tests performed for each sex separately revealed significant negative correlations between the pairwise relatedness coefficients and the number of days between the capture dates of pairs of wintering Tufted Duck in males and females. This pattern suggests the presence of a small number of co-migrating same-sex sibling pairs in wintering flocks of Tufted Ducks. Our findings provide one of the first genetic analyses of a common duck species outside the breeding season and contribute to the understanding of social interactions in long-distance migratory birds.