20 resultados para Polypeptide Kalata B1
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
CCAAT/enhancer-binding protein-alpha (CEBPA) is crucial for normal granulopoiesis and is frequently disrupted in acute myeloid leukaemia (AML). Increasing evidence suggests that CEBPA exerts its effects, in parts, by regulating specific microRNAs (miRNAs), as previously shown for miR-223. The aim of this study was to investigate the genome-wide pattern of miRNAs regulated by CEBPA in myeloid cells.
Resumo:
Gastrointestinal peptide hormone receptors overexpressed in neuroendocrine tumors (NET), such as somatostatin or glucagon-like peptide-1 (GLP-1) receptors, are used for in vivo tumor targeting. Unfortunately, not all NET express these receptors sufficiently.
Resumo:
Endothelial monocyte-activating polypeptide II (EMAP II) is a proinflammatory cytokine and a chemoattractant for monocytes. We show here that, in the mouse embryo, EMAP II mRNA was most abundant at sites of tissue remodeling where many apoptotic cells could be detected by terminal deoxynucleotidyltransferase-mediated dUTP end labeling. Removal of dead cells is known to require macrophages, and these were found to colocalize with areas of EMAP II mRNA expression and programmed cell death. In cultured cells, post-translational processing of pro-EMAP II protein to the mature released EMAP II form (23 kDa) occurred coincidentally with apoptosis. Cleavage of pro-EMAP II could be abrogated in cultured cells by using a peptide-based inhibitor, which competes with the ASTD cleavage site of pro-EMAP II. Our results suggest that the coordinate program of cell death includes activation of a caspase-like activity that initiates the processing of a cytokine responsible for macrophage attraction to the sites of apoptosis.
Resumo:
Successful pancreas transplantation in type I diabetic patients restores normal fasting glucose levels and biphasic insulin responses to glucose. However, virtually no data from pancreas recipients are available relative to other islet hormonal responses or hormonal counterregulation of hypoglycemia. Consequently, glucose, glucagon, catecholamine, and pancreatic polypeptide responses to insulin-induced hypoglycemia and to stimulation with arginine and secretin were examined in 38 diabetic pancreas recipients, 54 type I diabetic nonrecipients, and 26 nondiabetic normal control subjects. Glucose recovery after insulin-induced hypoglycemia in pancreas recipients was significantly improved. Basal glucagon levels were significantly higher in recipients compared with nonrecipients and normal subjects. Glucagon responses to insulin-induced hypoglycemia were significantly greater in the pancreas recipients compared with nonrecipients and similar to that observed in control subjects. Glucagon responses to intravenous arginine were significantly greater in pancreas recipients than that observed in both the nonrecipients and normal subjects. No differences were observed in epinephrine responses during insulin-induced hypoglycemia. No differences in pancreatic polypeptide responses to hypoglycemia were observed when comparing the recipient and nonrecipient groups, both of which were less than that observed in the control subjects. Our data demonstrate significant improvement in glucose recovery after hypoglycemia which was associated with improved glucagon secretion in type I diabetic recipients of pancreas transplantation.
Resumo:
Impaired function of shoulder muscles, resulting from rotator cuff tears, is associated with abnormal deposition of fat in muscle tissue, but corresponding cellular and molecular mechanisms, likely reflected by altered gene expression profiles, are largely unknown. Here, an analysis of muscle gene expression was carried out by semiquantitative RT-PCR in total RNA extracts of supraspinatus biopsies collected from 60 patients prior to shoulder surgery. A significant increase of alpha-skeletal muscle actin (p = 0.0115) and of myosin heavy polypeptide 1 (p = 0.0147) gene transcripts was observed in parallel with progressive fat deposition in the muscle, assessed on parasagittal T1-weighted turbo-spin-echo magnetic resonance images according to Goutallier. Upregulation of alpha-skeletal muscle actin and of myosin heavy polypeptide-1 has been reported to be associated with increased muscle tissue metabolism and oxidative stress. The findings of the present study, therefore, challenge the hypothesis that increased fat deposition in rotator cuff muscle after injury reflects muscle degeneration.
Resumo:
Mutations in the B1 subunit of the multisubunit vacuolar ATPase cause autosomal-recessive distal renal tubular acidosis and sensorineural deafness. Here, we report a novel frameshift mutation that truncates the C-terminus of the human B1 subunit. This mutant protein failed to assemble with other subunits in the cytosol to form the complex that can be targeted to vesicular structures in mammalian cells. Loss of proton pump activity was demonstrated in a functional complementation assay in B-subunit null yeast. The mutation caused loss of a discreet C-terminal region critical for subunit interaction not related to the C-terminal PDZ motif. Co-expression studies failed to demonstrate dominant negative effects of this truncated mutant over wild-type B1. Analysis of 12 reported B1 subunit missense mutations showed one polymorphic allele had intact pump function, two point mutants had intact assembly but defective proton pumping, and the remaining nine had disrupted assembly with no pump function. One presumed polymorphic allele was actually an inactivating mutation. Our study shows that multiple mechanisms of pump dysfunction result from B1 subunit mutations with a common outcome being defective assembly. Polymorphisms of the B1 subunit in the general population may affect renal acidification and urinary chemistry.
Resumo:
Laminin self-assembles into a basement membrane polymer through specific low-affinity interactions. Recently, it was shown that the terminal short-arm domain (domains VI and V) of the B1 chain (fragment E4) possesses one of the laminin self-interaction sites [Schittny, J.C. & Yurchenco, P.D. (1990) J. Cell Biol. 110, 825-832], but that the binding partner(s) of this domain is unknown. Using affinity retardation chromatography we now investigate the domain(s) fragment E4 binds to. The elution of E4 was clearly retarded on immobilized laminin and fragment E1' (three-chain short-arm complex excluding the distal part of the B1 chain), but not on immobilized E4 in calcium containing buffer and at 37 degrees C. Under the same conditions, E1' strongly interacts with immobilized E4. In addition, E1' is able to non-covalently cross-link soluble E4 to immobilized E4. No further interaction of laminin and E4 with additional fragments (P1', A, B2 and B1 chain short-arm complex without B1-domains VI-IV and without globules; E8, distal long arm and G1-3; E3, long-arm G subdomains 4 and 5) could be demonstrated. These data are interpreted as evidence that (a) the primary laminin-laminin bonds are formed between the short arms of laminin, that (b) the terminal B1 short-arm domain (E4) can interact with the short arm(s) of the A and/or B2 chain(s) (domain E1'), but does not self-interact, and that (c) due to at least three self-binding sites, laminin polymerization behaves co-operatively.
Resumo:
Congenital distal renal tubular acidosis (dRTA) from mutations of the B1 subunit of the V-ATPase is considered an autosomal recessive disease. We analyzed a dRTA kindred with a truncation-mutation of B1 (p.Phe468fsX487) previously shown to have failure of assembly into the V1 domain of the V-ATPase. All heterozygous carriers in this kindred have normal plasma bicarbonate concentrations, thus evaded the diagnosis of RTA. However, inappropriately high urine pH, hypocitraturia, and hypercalciuria are present either individually or in combination in the heterozygotes at baseline. Two of the heterozygotes studied also have inappropriate urinary acidification with acute ammonium chloride loading and impaired urine-blood pCO2 gradient during bicarbonaturia indicating presence of H+ gradient and flux defects. In normal human renal papillae, wild type B1 is located primarily on the plasma membrane but papilla from one of the heterozygote who had kidney stones had renal tissue secured from surgery showed B1 in both plasma membrane as well as a diffuse intracellular staining. Titrating increasing amounts of the mutant B1 subunit did not exhibit negative dominance over the expression, cellular distribution, or H+-pump activity of the wild type B1 in mammalian HEK293 cells and in V-ATPase-deficient S. cerevisiae. This is the first demonstration of renal acidification defects and nephrolithiasis in heterozygous carriers of mutant B1 subunit; which cannot be attributable to negative dominance. We propose that heterozygosity may lead to mild real acidification defects due to haploinsufficiency. B1 heterozygosity should be considered in patients with calcium nephrolithiasis and urinary abnormalities such as alkalinuria or hypocitraturia.
Resumo:
A new family of peptide receptors, the incretin receptor family, overexpressed on many neuroendocrine tumors (NETs) is of great importance because it may enable the in vivo peptide-based receptor targeting of a category of NETs that does not express the somatostatin receptor. Impressive in vivo diagnostic data were published for glucagonlike peptide 1 receptor-targeting radiopeptides. Recently, promising in vitro data have appeared for the second member of the incretin family, the glucose-dependent insulinotropic polypeptide (GIP) receptor. This prompted us to develop and evaluate a new class of radioligands with the potential to be used for the in vivo targeting of GIP receptor-positive tumors. METHODS GIP(1-42) was modified C-terminally, and the truncated peptides [Lys(30)(aminohexanoic acid [Ahx]-DOTA)]GIP(1-30)NH2 (EG1), [Lys(16)(Ahx-DOTA)]GIP(1-30)NH2 (EG2), and [Nle(14), Lys(30)(Ahx-DOTA)]GIP(1-30)NH2 (EG4) were conjugated with Ahx-DOTA via the Lys(16) and Lys(30) side chains. Their inhibitory concentration of 50% (IC50) was determined using [(125)I-Tyr(10)]GIP(1-30) as radioligand and GIP(1-30) as control peptide. The DOTA conjugates were labeled with (111)In and (68)Ga. In vitro evaluation included saturation and internalization studies using the pancreatic endocrine cell line INR1G9 transfected with the human GIP receptor (INR1G9-hGIPr). The in vivo evaluation consisted of biodistribution and PET imaging studies on nude mice bearing INR1G9-hGIPr tumors. RESULTS Binding studies (IC50 and saturation studies) showed high affinity toward GIP receptor for the GIP conjugates. Specific in vitro internalization was found, and almost the entire cell-associated activity was internalized (>90% of the cell-bound activity), supporting the agonist potency of the (111)In-vectors. (111)In-EG4 and (68)Ga-EG4 were shown to specifically target INR1G9-hGIPr xenografts, with tumor uptake of 10.4% ± 2.2% and 17.0% ± 4.4% injected activity/g, 1 h after injection, respectively. Kidneys showed the highest uptake, which could be reduced by approximately 40%-50% with a modified-fluid-gelatin plasma substitute or an inhibitor of the serine protease dipeptidyl peptidase 4. The PET images clearly visualized the tumor. CONCLUSION The evaluation of EG4 as a proof-of-principle radioligand indicated the feasibility of imaging GIP receptor-positive tumors. These results prompt us to continue the development of this family of radioligands for imaging of a broad spectrum of NETs.