3 resultados para Polycaprolactone
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND AND OBJECTIVES: In this in vitro feasibility study we analyzed tissue fusion using bovine serum albumin (BSA) and Indocyanine green (ICG) doped polycaprolactone (PCL) scaffolds in combination with a diode laser as energy source while focusing on the influence of irradiation power and albumin concentration on the resulting tensile strength and induced tissue damage. MATERIALS AND METHODS: A porous PCL scaffold doped with either 25% or 40% (w/w) of BSA in combination with 0.1% (w/w) ICG was used to fuse rabbit aortas. Soldering energy was delivered through the vessel from the endoluminal side using a continuous wave diode laser at 808 nm via a 400 microm core fiber. Scaffold surface temperatures were analyzed with an infrared camera. Optimum parameters such as irradiation time, radiation power and temperature were determined in view of maximum tensile strength but simultaneously minimum thermally induced tissue damage. Differential scanning calorimetry (DSC) was performed to measure the influence of PCL on the denaturation temperature of BSA. RESULTS: Optimum parameter settings were found to be 60 seconds irradiation time and 1.5 W irradiation power resulting in tensile strengths of around 2,000 mN. Corresponding scaffold surface temperature was 117.4+/- 12 degrees C. Comparison of the two BSA concentration revealed that 40% BSA scaffold resulted in significant higher tensile strength compared to the 25%. At optimum parameter settings, thermal damage was restricted to the adventitia and its interface with the outermost layer of the tunica media. The DSC showed two endothermic peaks in BSA containing samples, both strongly depending on the water content and the presence of PCL and/or ICG. CONCLUSIONS: Diode laser soldering of vascular tissue using BSA-ICG-PCL-scaffolds leads to strong and reproducible tissue bonds, with vessel damage limited to the adventitia. Higher BSA content results in higher tensile strengths. The DSC-measurements showed that BSA denaturation temperature is lowered by addition of water and/or ICG-PCL.
Resumo:
In implant dentistry, there is a need for synthetic bone substitute blocks to support ridge augmentation in situations where large bone volumes are missing. Polycaprolactone-based scaffolds demonstrated excellent results in bone tissue engineering applications. The use of customized polycaprolactone-tricalcium phosphate (PCL-TCP) displayed promising results from recent rat femur and rabbit calvaria studies. However, data from clinically representative models in larger animals do not exist.
Resumo:
Introduction: Laser tissue fusion has a large potential for minimal invasive tissue fusion in different surgical specialties. We have developed a combined endovascular minimal invasive surgical technique to fuse blood vessels for bypass surgery. However, the main difficulty was to achieve reproducible results as the main tensile strength is a result of protein denaturation. We therefore aimed to develop a quantitative, reproducible tissue fusion using polycapsulated silica core nanoparticles containing indocyanine green (Si@PCL/ICG). Methods: In a first step we developed mesoporous indocyanine green (ICG) containing nanoparticles and assessed their heating profile. Furthermore the stability to light exposure and ICG degradation was measured. In a second phase Si@PCL/ICG nanoparticles for embedding into a biodegradeable implant was developed and characterized using differential scanning calomeritry technique (DSC). Results: ICG containing mesoporous silica nanoparticles showed a sufficient increase in temperature up to 80°C suitable for laser tissue fusion. However, long-term stability of ICG mesoporous nanoparticles is lost after 7 days of light exposure. In contrast Si@PCL/ICG nanoparticles demonstrated a strong heating capacity as well as a good DSC profile for laser tissue fusion and long-term stability of 3 weeks. Furthermore Si@PCL/ICG nanoparticles can be directly dispersed in spin-coated polycaprolactone polymer. Conclusion: Si@PCL/ICG nanoparticles have good long-term stability and polymer embedding properties suitable for laser tissue fusion.