9 resultados para Polarized optical microscopy
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The optical properties of a match-like plasmonic nanostructure are numerically investigated using full-wave finite-difference time-domain analysis in conjunction with dispersive material models. This work is mainly motivated by the developed technique enabling reproducible fabrication of nanomatch structures as well as the growing applications that utilize the localized field enhancement in plasmonic nanostructures. Our research revealed that due to the pronounced field enhancement and larger resonance tunabilities, some nanomatch topologies show potentials for various applications in the field of, e.g., sensing as well as a novel scheme for highly reproducible tips in scanning near field optical microscopy, among others. Despite the additional degrees of freedom that are offered by the composite nature of the proposed nanomatch topology, the paper also reflects on a fundamental complication intrinsic to the material interfaces especially in the nanoscale: stoichiometric mixing. We conclude that the specificity in material modeling will become a significant issue in future research on functionalized composite nanostructures.
Resumo:
PURPOSE To determine whether particulate debris is present in periprosthetic tissue from revised Dynesys(®) devices, and if present, elicits a biological tissue reaction. METHODS Five Dynesys(®) dynamic stabilization systems consisting of pedicle screws (Ti alloy), polycarbonate-urethane (PCU) spacers and a polyethylene-terephthalate (PET) cord were explanted for pain and screw loosening after a mean of 2.86 years (1.9-5.3 years). Optical microscopy and scanning electron microscopy were used to evaluate wear, deformation and surface damage, and attenuated total reflectance Fourier transform infrared spectroscopy to assess surface chemical composition of the spacers. Periprosthetic tissue morphology and wear debris were determined using light microscopy, and PCU and PET wear debris by polarized light microscopy. RESULTS All implants had surface damage on the PCU spacers consistent with scratches and plastic deformation; 3 of 5 exhibited abrasive wear zones. In addition to fraying of the outer fibers of the PET cords in five implants, one case also evidenced cord fracture. The pedicle screws were unremarkable. Patient periprosthetic tissues around the three implants with visible PCU damage contained wear debris and a corresponding macrophage infiltration. For the patient revised for cord fracture, the tissues also contained large wear particles (>10 μm) and giant cells. Tissues from the other two patients showed comparable morphologies consisting of dense fibrous tissue with no inflammation or wear debris. CONCLUSIONS This is the first study to evaluate wear accumulation and local tissue responses for explanted Dynesys(®) devices. Polymer wear debris and an associated foreign-body macrophage response were observed in three of five cases.
Resumo:
The aim of this study was to compare different bacterial models for in vitro induction of non-cavitated enamel caries-like lesions by microhardness and polarized light microscopy analyses. One hundred blocks of bovine enamel were randomly divided into four groups (n = 25) according to the bacterial model for caries induction: (A) Streptococcus mutans, (B) S. mutans and Lactobacillus acidophilus, (C) S. mutans and L. casei, and (D) S. mutans, L. acidophilus, and L. casei. Within each group, the blocks were randomly divided into five subgroups according to the duration of the period of caries induction (4-20 days). The enamel blocks were immersed in cariogenic solution containing the microorganisms, which was changed every 48 h. Groups C and D presented lower surface hardness values (SMH) and higher area of hardness loss (ΔS) after the cariogenic challenge than groups A and B (P < 0.05). As regards lesion depth, under polarized light microscopy, group A presented significantly lower values, and groups C and D the highest values. Group B showed a higher value than group A (P < 0.05). Groups A and B exhibited subsurface caries lesions after all treatment durations, while groups C and D presented erosion-type lesions with surface softening. The model using S. mutans, whether or not it was associated with L. acidophilus, was less aggressive and may be used for the induction of non-cavitated enamel caries-like lesions. The optimal period for inducing caries-like lesions was 8 days.
Resumo:
This prospective study on symptomatic adult patients with femoroacetabular impingement (FAI) who underwent open surgical intervention for management was designed to identify any obvious histological differences in the damaged acetabular cartilage within different subgroups of FAI. 20 patients underwent surgical intervention following safe surgical dislocation of the hip. There were 6 cases of cam impingement, 5 cases of pincer impingement and 9 of the mixed type. Pincer impingement cases demonstrated a characteristic focal, well-circumscribed and localized area of severe damage. On the other hand, cases with cam impingement showed a diffuse area of involvement affecting a larger surface of the acetabular cartilage, with degenerative changes, superficial erosions and some discontinuities. A small biopsy specimen of the acetabular rim including bone, cartilage and labrum from the affected zone was obtained in all cases. Histological evaluation was performed under normal and polarized light microscopy. Histological findings helped corroborate the pre-operative diagnosis and also define the unique nature of impingement and specific damage according to the type of impingement.
Resumo:
Mechanical testing of the periodontal ligament requires a practical experimental model. Bovine teeth are advantageous in terms of size and availability, but information is lacking as to the anatomy and histology of their periodontium. The aim of this study, therefore, was to characterize the anatomy and histology of the attachment apparatus in fully erupted bovine mandibular first molars. A total of 13 teeth were processed for the production of undecalcified ground sections and decalcified semi-thin sections, for NaOH maceration, and for polarized light microscopy. Histomorphometric measurements relevant to the mechanical behavior of the periodontal ligament included width, number, size and area fraction of blood vessels and fractal analysis of the two hard-soft tissue interfaces. The histological and histomorphometric analyses were performed at four different root depths and at six circumferential locations around the distal and mesial roots. The variety of techniques applied provided a comprehensive view of the tissue architecture of the bovine periodontal ligament. Marked regional variations were observed in width, surface geometry of the two bordering hard tissues (cementum and alveolar bone), structural organization of the principal periodontal ligament connective tissue fibers, size, number and numerical density of blood vessels in the periodontal ligament. No predictable pattern was observed, except for a statistically significant increase in the area fraction of blood vessels from apical to coronal. The periodontal ligament width was up to three times wider in bovine teeth than in human teeth. The fractal analyses were in agreement with the histological observations showing frequent signs of remodeling activity in the alveolar bone - a finding which may be related to the magnitude and direction of occlusal forces in ruminants. Although samples from the apical root portion are not suitable for biomechanical testing, all other levels in the buccal and lingual aspects of the mesial and distal roots may be considered. The bucco-mesial aspect of the distal root appears to be the most suitable location.
Resumo:
Relationships between mineralization, collagen orientation and indentation modulus were investigated in bone structural units from the mid-shaft of human femora using a site-matched design. Mineral mass fraction, collagen fibril angle and indentation moduli were measured in registered anatomical sites using backscattered electron imaging, polarized light microscopy and nano-indentation, respectively. Theoretical indentation moduli were calculated with a homogenization model from the quantified mineral densities and mean collagen fibril orientations. The average indentation moduli predicted based on local mineralization and collagen fibers arrangement were not significantly different from the average measured experimentally with nanoindentation (p=0.9). Surprisingly, no substantial correlation of the measured indentation moduli with tissue mineralization and/or collagen fiber arrangement was found. Nano-porosity, micro-damage, collagen cross-links, non-collagenous proteins or other parameters affect the indentation measurements. Additional testing/simulation methods need to be considered to properly understand the variability of indentation moduli, beyond the mineralization and collagen arrangement in bone structural units.
Resumo:
We report the fabrication, functionalization and testing of microdevices for cell culture and cell traction force measurements in three-dimensions (3D). The devices are composed of bent cantilevers patterned with cell-adhesive spots not lying on the same plane, and thus suspending cells in 3D. The cantilevers are soft enough to undergo micrometric deflections when cells pull on them, allowing cell forces to be measured by means of optical microscopy. Since individual cantilevers are mechanically independent of each other, cell traction forces are determined directly from cantilever deflections. This proves the potential of these new devices as a tool for the quantification of cell mechanics in a system with well-defined 3D geometry and mechanical properties.
Resumo:
Splenomegaly, albeit variably, is a hallmark of malaria; yet, the role of the spleen in Plasmodium infections remains vastly unknown. The implementation of imaging to study the spleen is rapidly advancing our knowledge of this so-called "blackbox" of the abdominal cavity. Not only has ex vivo imaging revealed the complex functional compartmentalization of the organ and immune effector cells, but it has also allowed the observation of major structural remodeling during infections. In vivo imaging, on the other hand, has allowed quantitative measurements of the dynamic passage of the parasite at spatial and temporal resolution. Here, we review imaging techniques used for studying the malarious spleen, from optical microscopy to in vivo imaging, and discuss the bright perspectives of evolving technologies in our present understanding of the role of this organ in infections caused by Plasmodium.
Resumo:
A set of optimized deposition conditions for the inner wall coating of fused silica tubes with amorphous selenium was elaborated. The method is based on the vapor transport deposition of pure elemental selenium on a cooled substrate held at liquid nitrogen temperatures. Morphological and structural examination of the deposited layer was performed by optical microscopy and X-ray diffraction studies. Neutron activated selenium was used to monitor the deposition pattern and its stability under high gas flows. Monte Carlo simulations allowed the estimation of the different Se species composing the amorphous phase, at the given experimental deposition conditions. The versatility of the coating method presented in this work allows for the coating of tubes of different lengths and diameters, opening the way for several applications of amorphous selenium films in various fields.