20 resultados para Polarization interferometers
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Endothelial ICAM-1 and ICAM-2 were shown to be essential for T cell diapedesis across the blood-brain barrier (BBB) in vitro under static conditions. Crawling of T cells prior to diapedesis was only recently revealed to occur preferentially against the direction of blood flow on the endothelial surface of inflamed brain microvessels in vivo. Using live cell-imaging techniques, we prove that Th1 memory/effector T cells predominantly crawl against the direction of flow on the surface of BBB endothelium in vitro. Analysis of T cell interaction with wild-type, ICAM-1-deficient, ICAM-2-deficient, or ICAM-1 and ICAM-2 double-deficient primary mouse brain microvascular endothelial cells under physiological flow conditions allowed us to dissect the individual contributions of endothelial ICAM-1, ICAM-2, and VCAM-1 to shear-resistant T cell arrest, polarization, and crawling. Although T cell arrest was mediated by endothelial ICAM-1 and VCAM-1, T cell polarization and crawling were mediated by endothelial ICAM-1 and ICAM-2 but not by endothelial VCAM-1. Therefore, our data delineate a sequential involvement of endothelial ICAM-1 and VCAM-1 in mediating shear-resistant T cell arrest, followed by endothelial ICAM-1 and ICAM-2 in mediating T cell crawling to sites permissive for diapedesis across BBB endothelium.
Resumo:
Theileria annulata is an intracellular protozoan parasite that infects B cells and macrophages of ruminants. Macrophages infected with T. annulata are de-differentiated and display tumour cell properties and a metastatic behaviour. How parasitized cells adapt their morphology, motility and invasive behaviour has not yet been addressed in detail. In this study, I investigated the regulation of host cell actin dynamics in T. annulata-transformed macrophages and how this affects host cell morphology and motility. T. annulata was found to promote the formation of filamentous-actin-rich podosome-type adhesions (PTAs) and lamellipodia, and to establish a polarized morphology of the infected cell. Characteristic for parasite-dependent host cell polarization is that infected cells display a single, persistent lamellipodium. Src kinases--in particular Hck--are required for the polar extension of this lamellipodium. Hck does so by promoting the clustered assembly of PTAs and accumulation of proteins of the Ezrin, Radixin, Moesin (ERM) family in lamellipodia. Polar accumulation of PTAs and ERM proteins correlates with focal matrix degradation underneath lamellipodia. These findings suggest that T. annulata equips its host cell with properties to adhere and invade. These properties are likely to promote the motile behaviour required for dissemination of infected cells in vivo.
Resumo:
Brain edema is the main cause of death from brain infarction. The polarized expression of the water channel protein aquaporin-4 (AQP4) on astroglial endfeet surrounding brain microvessels suggests a role in brain water balance. Loss of astrocyte foot process anchoring to the basement membrane (BM) accompanied by the loss of polarized localization of AQP4 to astrocytic endfeet has been shown to be associated with vasogenic/extracellular edema in neuroinflammation. Here, we asked if loss of astrocyte polarity is also observed in cytotoxic/intracellular edema following focal brain ischemia after transient middle cerebral artery occlusion (tMCAO). Upon mild focal brain ischemia, we observed diminished immunostaining for the BM components laminin α4, laminin α2, and the proteoglycan agrin, in the core of the lesion, but not in BMs in the surrounding penumbra. Staining for the astrocyte endfoot anchorage protein β-dystroglycan (DG) was dramatically reduced in both the lesion core and the penumbra, and AQP4 and Kir4.1 showed a loss of polarized localization to astrocytic endfeet. Interestingly, we observed that mice deficient for agrin expression in the brain lack polarized localization of β-DG and AQP4 at astrocytic endfeet and do not develop early cytotoxic/intracellular edema following tMCAO. Taken together, these data indicate that the binding of DG to agrin embedded in the subjacent BM promotes polarized localization of AQP4 to astrocyte endfeet. Reduced DG protein levels and redistribution of AQP4 as observed upon tMCAO might therefore counteract early edema formation and reflect a beneficial mechanism operating in the brain to minimize damage upon ischemia.
Resumo:
OBJECTIVE: Orthogonal polarization spectral (OPS) imaging is used to assess mucosal microcirculation. We tested sensitivity and variability of OPS in the assessment of mesenteric blood flow (Q (sma)) reduction. SETTING: University Animal Laboratory. INTERVENTIONS: In eight pigs, Q (sma) was reduced in steps of 15% from baseline; five animals served as controls. Jejunal mucosal microcirculatory blood flow was recorded with OPS and laser Doppler flowmetry at each step. OPS data from each period were collected and randomly ordered. Samples from each period were individually chosen by two blinded investigators and quantified [capillary density (number of vessels crossing predefined lines), number of perfused villi] after agreement on the methodology. MEASUREMENT AND RESULTS: Interobserver coefficient of variation (CV) for capillary density from samples representing the same flow condition was 0.34 (0.04-1.41) and intraobserver CV was 0.10 (0.02-0.61). Only one investigator observed a decrease in capillary density [to 62% (48-82%) of baseline values at 45% Q (sma) reduction; P = 0.011], but comparisons with controls never revealed significant differences. In contrast, reduction in perfused villi was detected by both investigators at 75% of mesenteric blood flow reduction. Laser Doppler flow revealed heterogeneous microcirculatory perfusion. CONCLUSIONS: Assessment of capillary density did not reveal differences between animals with and without Q (sma) reduction, and evaluation of perfused villi revealed blood flow reduction only when Q (sma) was very low. Potential explanations are blood flow redistribution and heterogeneity, and suboptimal contrast of OPS images. Despite agreement on the method of analysis, interobserver differences in the quantification of vessel density on gut mucosa using OPS are high.
Resumo:
his Letter presents measurements of the polarization of the top quark in top-antitop quark pair events, using 4.7 fb−1 of proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at s√=7 TeV. Final states containing one or two isolated leptons (electrons or muons) and jets are considered. Two measurements of αℓP, the product of the leptonic spin-analyzing power and the top quark polarization, are performed assuming that the polarization is introduced by either a CP conserving or a maximally CP violating production process. The measurements obtained, αℓPCPC=−0.035±0.014(stat)±0.037(syst) and αℓPCPV=0.020±0.016(stat)+0.013−0.017(syst), are in good agreement with the standard model prediction of negligible top quark polarization.
Resumo:
BACKGROUND SIRT2 belongs to a highly conserved family of NAD+-dependent deacylases, consisting of seven members (SIRT1-SIRT7), which vary in subcellular localizations and have substrates ranging from histones to transcription factors and enzymes. Recently SIRT2 was revealed to play an important role in inflammation, directly binding, deacetylating, and inhibiting the p65 subunit of NF-κB. METHODS A Sirt2 deficient mouse line (Sirt2-/-) was generated by deleting exons 5-7, encoding part of the SIRT2 deacetylase domain, by homologous recombination. Age- and sex-matched Sirt2-/- and Sirt2+/+ littermate mice were subjected to dextran sulfate sodium (DSS)-induced colitis and analyzed for colitis susceptibility. RESULTS Sirt2-/- mice displayed more severe clinical and histological manifestations after DSS colitis compared to wild type littermates. Notably, under basal condition, Sirt2 deficiency does not affect the basal phenotype and intestinal morphology Sirt2 deficiency, however, affects macrophage polarization, creating a pro-inflammatory milieu in the immune cells compartment. CONCLUSION These data confirm a protective role for SIRT2 against the development of inflammatory processes, pointing out a potential role for this sirtuin as a suppressor of colitis. In fact, SIRT2 deletion promotes inflammatory responses by increasing NF-κB acetylation and by reducing the M2-associated anti-inflammatory pathway. Finally, we speculate that the activation of SIRT2 may be a potential approach for the treatment of inflammatory bowel disease.