5 resultados para Poisson processes
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Serial correlation of extreme midlatitude cyclones observed at the storm track exits is explained by deviations from a Poisson process. To model these deviations, we apply fractional Poisson processes (FPPs) to extreme midlatitude cyclones, which are defined by the 850 hPa relative vorticity of the ERA interim reanalysis during boreal winter (DJF) and summer (JJA) seasons. Extremes are defined by a 99% quantile threshold in the grid-point time series. In general, FPPs are based on long-term memory and lead to non-exponential return time distributions. The return times are described by a Weibull distribution to approximate the Mittag–Leffler function in the FPPs. The Weibull shape parameter yields a dispersion parameter that agrees with results found for midlatitude cyclones. The memory of the FPP, which is determined by detrended fluctuation analysis, provides an independent estimate for the shape parameter. Thus, the analysis exhibits a concise framework of the deviation from Poisson statistics (by a dispersion parameter), non-exponential return times and memory (correlation) on the basis of a single parameter. The results have potential implications for the predictability of extreme cyclones.
Resumo:
This article provides importance sampling algorithms for computing the probabilities of various types ruin of spectrally negative Lévy risk processes, which are ruin over the infinite time horizon, ruin within a finite time horizon and ruin past a finite time horizon. For the special case of the compound Poisson process perturbed by diffusion, algorithms for computing probabilities of ruins by creeping (i.e. induced by the diffusion term) and by jumping (i.e. by a claim amount) are provided. It is shown that these algorithms have either bounded relative error or logarithmic efficiency, as t,x→∞t,x→∞, where t>0t>0 is the time horizon and x>0x>0 is the starting point of the risk process, with y=t/xy=t/x held constant and assumed either below or above a certain constant.
Resumo:
We introduce a multistable subordinator, which generalizes the stable subordinator to the case of time-varying stability index. This enables us to define a multifractional Poisson process. We study properties of these processes and establish the convergence of a continuous-time random walk to the multifractional Poisson process.