2 resultados para Plexiglas.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Information about the welfare and husbandry of pet and laboratory fish is scarce although millions of fish are sold in pet shops and used in laboratory research every year. Inadequate housing conditions can cause behavioural problems also in fish since they are complex animals with sophisticated behaviour. In this study, we investigated the influence of environmental complexity on compartment preference and behaviour in zebrafish (Danio rerio) and checker barbs (Puntius oligolepis). For the preference test, large aquaria were divided by two semi-transparent walls of Plexiglas into an empty compartment, a structured compartment enriched with plants and clay pots, and a smaller compartment in-between, where food was provided. For observation, the empty and structured compartments were divided into six zones of similar size by defining three vertical layers and two horizontal areas (back vs. front area). Seven groups of six to nine zebrafish and seven groups of seven or eight checker barbs were observed on four days each (within a time period of ten days) to assess compartment use and activity, and to assess behavioural diversity and use of zones within compartments. Both zebrafish and checker barbs showed a significant preference for the structured compartment. Nevertheless, in neither species did behavioural diversity differ between the empty and structured compartment. Zebrafish used all zones in both compartments to the same extent. Checker barbs, however, used the structured compartment more evenly than the empty compartment, where they mainly used the lower and middle zones. These results suggest that zebrafish and checker barbs have a preference for complex environments. Furthermore, they indicate that the behavioural and ecological needs of fish may vary depending on species, and recommendations for husbandry should be specified at species level. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolution of porosity due to dissolution/precipitation processes of minerals and the associated change of transport parameters are of major interest for natural geological environments and engineered underground structures. We designed a reproducible and fast to conduct 2D experiment, which is flexible enough to investigate several process couplings implemented in the numerical code OpenGeosys-GEM (OGS-GEM). We investigated advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. In addition, the system allowed to investigate the influence of microscopic (pore scale) processes on macroscopic (continuum scale) transport. A Plexiglas tank of dimension 10 × 10 cm was filled with a 1 cm thick reactive layer consisting of a bimodal grain size distribution of celestite (SrSO4) crystals, sandwiched between two layers of sand. A barium chloride solution was injected into the tank causing an asymmetric flow field to develop. As the barium chloride reached the celestite region, dissolution of celestite was initiated and barite precipitated. Due to the higher molar volume of barite, its precipitation caused a porosity decrease and thus also a decrease in the permeability of the porous medium. The change of flow in space and time was observed via injection of conservative tracers and analysis of effluents. In addition, an extensive post-mortem analysis of the reacted medium was conducted. We could successfully model the flow (with and without fluid density effects) and the transport of conservative tracers with a (continuum scale) reactive transport model. The prediction of the reactive experiments initially failed. Only the inclusion of information from post-mortem analysis gave a satisfactory match for the case where the flow field changed due to dissolution/precipitation reactions. We concentrated on the refinement of post-mortem analysis and the investigation of the dissolution/precipitation mechanisms at the pore scale. Our analytical techniques combined scanning electron microscopy (SEM) and synchrotron X-ray micro-diffraction/micro-fluorescence performed at the XAS beamline (Swiss Light Source). The newly formed phases include an epitaxial growth of barite micro-crystals on large celestite crystals (epitaxial growth) and a nano-crystalline barite phase (resulting from the dissolution of small celestite crystals) with residues of celestite crystals in the pore interstices. Classical nucleation theory, using well-established and estimated parameters describing barite precipitation, was applied to explain the mineralogical changes occurring in our system. Our pore scale investigation showed limits of the continuum scale reactive transport model. Although kinetic effects were implemented by fixing two distinct rates for the dissolution of large and small celestite crystals, instantaneous precipitation of barite was assumed as soon as oversaturation occurred. Precipitation kinetics, passivation of large celestite crystals and metastability of supersaturated solutions, i.e. the conditions under which nucleation cannot occur despite high supersaturation, were neglected. These results will be used to develop a pore scale model that describes precipitation and dissolution of crystals at the pore scale for various transport and chemical conditions. Pore scale modelling can be used to parameterize constitutive equations to introduce pore-scale corrections into macroscopic (continuum) reactive transport models. Microscopic understanding of the system is fundamental for modelling from the pore to the continuum scale.