9 resultados para Platinum-group Elements
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
It is widely accepted that stabilization of the continental crust requires the presence of sub-continental lithospheric mantle. However, the degree of melt depletion required to stabilize the lithosphere and whether widespread refertilization is a significant process remain unresolved. Here, major and trace element, including platinum group elements (PGE), characterization of 40 mantle xenoliths from 13 localities is used to constrain the melt depletion, refertilization and metasomatic history of lithospheric mantle underneath the micro-continent Zealandia. Our previously published Re–Os isotopic data for a subset of these xenoliths indicate Phanerozoic to Paleoproterozoic ages and, reinterpreted with the new major and trace element data presented here, demonstrate that a large volume (>2 million km3) of lithospheric mantle with an age of 1·99 ± 0·21 Ga is present below the much younger crust of Zealandia. A peritectic melting model using moderately incompatible trace elements (e.g. Yb) in bulk-rocks demonstrates that these peridotites experienced a significant range of degrees of partial melting, between 3 and 28%. During subsolidus equilibration clinopyroxene gains significant rare earth elements (REE), which then leads to the underestimation of the degree of partial melting by ≤12% in fertile xenoliths. A new approach taking into account the effects of subsolidus re-equilibration on clinopyroxene composition effectively removes discrepancies in the calculated degree of melting and provides consistent estimates of between 4 and 29%. The estimated amount of melting is independent of the Re–Os model ages of the samples. The PGE patterns record simple melt depletion histories and the retention of primary base metal sulfides in the majority of the xenoliths. A rapid decrease in Pt/IrN observed at c. 1·0 wt % Al2O3 is a direct result of the exhaustion of sulfide in the mantle residue at c. 20–25% partial melting and the inability of Pt to form a stable alloy phase. Major elements preserve evidence for refertilization by a basaltic component that resulted in the formation of secondary clinopyroxene and low-forsterite olivine. The majority of xenoliths show the effects of cryptic metasomatic overprinting, ranging from minor to strong light REE enrichments in bulk-rocks (La/YbN = 0·16–15·9). Metasomatism is heterogeneous, with samples varying from those with weak REE enrichment and notable positive Sr and U–Th anomalies and negative Nb–Ta anomalies in clinopyroxene to those that have extremely high concentrations of REE, Th–U and Nb. Chemical compositions are consistent with a carbonatitic component contributing to the metasomatism of the lithosphere under Zealandia. Notably, the intense metasomatism of the samples did not affect the PGE budget of the peridotites as this was controlled by residual sulfides.
Resumo:
This phase II trial aimed to evaluate feasibility and efficacy of a first-line combination of targeted therapies for advanced non-squamous NSCLC: bevacizumab (B) and erlotinib (E), followed by platinum-based CT at disease progression (PD).
Resumo:
More than 500 endemic haplochromine cichlid species inhabit Lake Victoria. This striking species diversity is a classical example of recent explosive adaptive radiation thought to have happened within the last similar to 15,000 years. In this study, we examined the population structure and historical demography of 3 pelagic haplochromine cichlid species that resemble in morphology and have similar niche, Haplochromis (Yssichromis) laparogramma, Haplochromis (Y.) pyrrhocephalus, and Haplochromis (Y.) sp. "glaucocephalus". We investigated the sequences of the mitochondrial DNA control region and the insertion patterns of short interspersed elements (SINEs) of 759 individuals. We show that sympatric forms are genetically differentiated in 4 of 6 cases, but we also found apparent weakening of the genetic differentiation in areas with turbid water. We estimated the timings of population expansion and species divergence to coincide with the refilling of the lake at the Pleistocene/Holocene boundary. We also found that estimates can be altered significantly by the choice of the shape of the molecular clock. If we employ the nonlinear clock model of evolutionary rates in which the rates are higher towards the recent, the population expansion was dated at around the event of desiccation of the lake ca. 17,000 YBP. Thus, we succeeded in clarifying the species and population structure of closely related Lake Victoria cichlids and in showing the importance of applying appropriate clock calibrations in elucidating recent evolutionary events. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVES Molecular subclassification of non small-cell lung cancer (NSCLC) is essential to improve clinical outcome. This study assessed the prognostic and predictive value of circulating micro-RNA (miRNA) in patients with non-squamous NSCLC enrolled in the phase II SAKK (Swiss Group for Clinical Cancer Research) trial 19/05, receiving uniform treatment with first-line bevacizumab and erlotinib followed by platinum-based chemotherapy at progression. MATERIALS AND METHODS Fifty patients with baseline and 24 h blood samples were included from SAKK 19/05. The primary study endpoint was to identify prognostic (overall survival, OS) miRNA's. Patient samples were analyzed with Agilent human miRNA 8x60K microarrays, each glass slide formatted with eight high-definition 60K arrays. Each array contained 40 probes targeting each of the 1347 miRNA. Data preprocessing included quantile normalization using robust multi-array average (RMA) algorithm. Prognostic and predictive miRNA expression profiles were identified by Spearman's rank correlation test (percentage tumor shrinkage) or log-rank testing (for time-to-event endpoints). RESULTS Data preprocessing kept 49 patients and 424 miRNA for further analysis. Ten miRNA's were significantly associated with OS, with hsa-miR-29a being the strongest prognostic marker (HR=6.44, 95%-CI 2.39-17.33). Patients with high has-miR-29a expression had a significantly lower survival at 10 months compared to patients with a low expression (54% versus 83%). Six out of the 10 miRNA's (hsa-miRN-29a, hsa-miR-542-5p, hsa-miR-502-3p, hsa-miR-376a, hsa-miR-500a, hsa-miR-424) were insensitive to perturbations according to jackknife cross-validation on their HR for OS. The respective principal component analysis (PCA) defined a meta-miRNA signature including the same 6 miRNA's, resulting in a HR of 0.66 (95%-CI 0.53-0.82). CONCLUSION Cell-free circulating miRNA-profiling successfully identified a highly prognostic 6-gene signature in patients with advanced non-squamous NSCLC. Circulating miRNA profiling should further be validated in external cohorts for the selection and monitoring of systemic treatment in patients with advanced NSCLC.
Resumo:
Chemical studies of superheavy elements require fast and efficient techniques, due to short half-lives and low production rates of the investigated nuclides. Here, we advocate for using a tubular flow reactor for assessing the thermal stability of the Sg carbonyl complex – Sg(CO)6. The experimental setup was tested with Mo and W carbonyl complexes, as their properties are established and supported by theoretical predictions. The suggested approach proved to be effective in discriminating between the thermal stabilities of Mo(CO)6 and W(CO)6. Therefore, an experimental verification of the predicted Sg–CO bond dissociation energy seems to be feasible by applying this technique. By investigating the effect of 104,105Mo beta-decay on the formation of 104,105Tc carbonyl complex, we estimated the lower reaction time limit for the metal carbonyl synthesis in the gas phase to be more than 100 ms. We examined further the influence of the wall material of the recoil chamber, the carrier gas composition, the gas flow rate, and the pressure on the production yield of 104Mo(CO)6, so that the future stability tests with Sg(CO)6 can be optimized accordingly.
Resumo:
Solar nebula processes led to a depletion of volatile elements in different chondrite groups when compared to the bulk chemical composition of the solar system deduced from the Sun's photosphere. For moderately-volatile elements, this depletion primarily correlates with the element condensation temperature and is possibly caused by incomplete condensation from a hot solar nebula, evaporative loss from the precursor dust, and/or inherited from the interstellar medium. Element concentrations and interelement ratios of volatile elements do not provide a clear picture about responsible mechanisms. Here, the abundance and stable isotope composition of the moderately- to highly-volatile element Se are investigated in carbonaceous, ordinary, and enstatite chondrites to constrain the mechanism responsible for the depletion of volatile elements in planetary bodies of the inner solar system and to define a δ(82/78)Se value for the bulk solar system. The δ(82/78)Se of the studied chondrite falls are identical within their measurement uncertainties with a mean of −0.20±0.26‰ (2 s.d., n=14n=14, relative to NIST SRM 3149) despite Se abundance depletions of up to a factor of 2.5 with respect to the CI group. The absence of resolvable Se isotope fractionation rules out a kinetic Rayleigh-type incomplete condensation of Se from the hot solar nebula or partial kinetic evaporative loss on the precursor material and/or the parent bodies. The Se depletion, if acquired during partial condensation or evaporative loss, therefore must have occurred under near equilibrium conditions to prevent measurable isotope fractionation. Alternatively, the depletion and cooling of the nebula could have occurred simultaneously due to the continuous removal of gas and fine particles by the solar wind accompanied by the quantitative condensation of elements from the pre-depleted gas. In this scenario the condensation of elements does not require equilibrium conditions to avoid isotope fractionation. The results further suggest that the processes causing the high variability of Se concentrations and depletions in ordinary and enstatite chondrites did not involve any measurable isotope fractionation. Different degrees of element depletions and isotope fractionations of the moderately-volatile elements Zn, S, and Se in ordinary and enstatite chondrites indicate that their volatility is controlled by the thermal stabilities of their host phases and not by the condensation temperature under canonical nebular conditions.