9 resultados para Plates (structural components)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Carotenoid-based yellowish to red plumage colors are widespread visual signals used in sexual and social communication. To understand their ultimate signaling functions, it is important to identify the proximate mechanism promoting variation in coloration. Carotenoid-based colors combine structural and pigmentary components, but the importance of the contribution of structural components to variation in pigment-based colors (i.e., carotenoid-based colors) has been undervalued. In a field experiment with great tits (Parus major), we combined a brood size manipulation with a simultaneous carotenoid supplementation in order to disentangle the effects of carotenoid availability and early growth condition on different components of the yellow breast feathers. By defining independent measures of feather carotenoid content (absolute carotenoid chroma) and background structure (background reflectance), we demonstrate that environmental factors experienced during the nestling period, namely, early growth conditions and carotenoid availability, contribute independently to variation in yellow plumage coloration. While early growth conditions affected the background reflectance of the plumage, the availability of carotenoids affected the absolute carotenoid chroma, the peak of maximum ultraviolet reflectance, and the overall shape, that is, chromatic information of the reflectance curves. These findings demonstrate that environment-induced variation in background structure contributes significantly to intraspecific variation in yellow carotenoid-based plumage coloration.
Resumo:
Sphingolipids not only function as structural components of cell membranes but also act as signaling molecules to regulate fundamental cellular responses, such as cell death and differentiation, proliferation and certain types of inflammation. Particularly the cellular balance between ceramide and sphingosine 1-phosphate seems to be crucial for a cell's decision to either undergo apoptosis or proliferate, two events which are implicated in tumor development and growth. Whereas ceramide possesses proapoptotic capacity in many cell types, sphingosine 1-phosphate acts as a counterplayer able to induce cell proliferation and protect cells from undergoing apoptosis. Therefore, tipping the balance in favour of ceramide production, i.e. by inhibiting ceramidase or sphingosine kinase activities has potential to support its proapoptotic action and hence represents a promising rational approach to effective cancer therapy. This review highlights most recent data on the regulation of cellular sphingolipid formation and their potential implication in tumor development, and provides perspectives for their use as targets in molecular intervention therapy.
Resumo:
AIMS: Bacillus anthracis strains of various origins were analysed with the view to describe intrinsic and persistent structural components of the Bacillus collagen-like protein of anthracis glycoprotein associated anthrose containing tetrasaccharide in the exosporium. METHODS AND RESULTS: The tetrasaccharide consists of three rhamnose residues and an unique monosaccharide--anthrose. As anthrose was not found in spores of related strains of bacteria, we envisioned the detection of B. anthracis spores based on antibodies against anthrose-containing polysaccharides. Carbohydrate-protein conjugates containing the synthetic tetrasaccharide, an anthrose-rhamnose disaccharide or anthrose alone were employed to immunize mice. All three formulations were immunogenic and elicited IgG responses with different fine specificities. All sera and monoclonal antibodies derived from tetrasaccharide immunized mice cross-reacted not only with spore lysates of a panel of virulent B. anthracis strains, but also with some of the B. cereus strains tested. CONCLUSIONS: Our results demonstrate that antibodies to synthetic carbohydrates are useful tools for epitope analyses of complex carbohydrate antigens and for the detection of particular target structures in biological specimens. SIGNIFICANCE AND IMPACT OF THE STUDY: Although not strictly specific for B. anthracis spores, antibodies against the tetrasaccharide may have potential as immuno-capturing components for a highly sensitive spore detection system.
Resumo:
Sterols are an essential class of lipids in eukaryotes, where they serve as structural components of membranes and play important roles as signaling molecules. Sterols are also of high pharmacological significance: cholesterol-lowering drugs are blockbusters in human health, and inhibitors of ergosterol biosynthesis are widely used as antifungals. Inhibitors of ergosterol synthesis are also being developed for Chagas's disease, caused by Trypanosoma cruzi. Here we develop an in silico pipeline to globally evaluate sterol metabolism and perform comparative genomics. We generate a library of hidden Markov model-based profiles for 42 sterol biosynthetic enzymes, which allows expressing the genomic makeup of a given species as a numerical vector. Hierarchical clustering of these vectors functionally groups eukaryote proteomes and reveals convergent evolution, in particular metabolic reduction in obligate endoparasites. We experimentally explore sterol metabolism by testing a set of sterol biosynthesis inhibitors against trypanosomatids, Plasmodium falciparum, Giardia, and mammalian cells, and by quantifying the expression levels of sterol biosynthetic genes during the different life stages of T. cruzi and Trypanosoma brucei. The phenotypic data correlate with genomic makeup for simvastatin, which showed activity against trypanosomatids. Other findings, such as the activity of terbinafine against Giardia, are not in agreement with the genotypic profile.
Resumo:
Although loosening of cemented glenoid components is one of the major complications of total shoulder arthroplasty, there is little information about factors affecting initial fixation of these components in the scapular neck. This study was performed to assess the characteristics of structural fixation of pegged glenoid components, if inserted with two different recommended cementing techniques. Six fresh-frozen shoulder specimens and two types of glenoid components were used. The glenoids were prepared according to the instructions and with the instrumentation of the manufacturer. In 3 specimens, the bone cement was inserted into the peg receiving holes (n = 12) and applied to the back surface of the glenoid component with a syringe. In the other 3 specimens, the cement was inserted into the holes (n = 15) by use of pure finger pressure: no cement was applied on the backside of the component. Micro-computed tomography scans with a resolution of 36 microm showed an intact cement mantle around all 12 pegs (100%) when a syringe was used. An incomplete cement plug was found in 7 of 15 pegs (47%) when the finger-pressure technique was used. Cement penetration into the cancellous bone was deeper in osteopenic bone. Application of bone cement on the backside of the glenoid prosthesis improved seating by filling out small spaces between bone and polyethylene resulting from irregularities after reaming or local cement extrusion from a drill hole. The fixation of a pegged glenoid component is better if the holes are filled with cement under pressure by use of a syringe and if cement is applied to the back of the glenoid component than if cement is inserted with pure finger pressure and no cement is applied to the back surface of the component.
Resumo:
Despite recent progress in fluorescence microscopy techniques, electron microscopy (EM) is still superior in the simultaneous analysis of all tissue components at high resolution. However, it is unclear to what extent conventional fixation for EM using aldehydes results in tissue alteration. Here we made an attempt to minimize tissue alteration by using rapid high-pressure freezing (HPF) of hippocampal slice cultures. We used this approach to monitor fine-structural changes at hippocampal mossy fiber synapses associated with chemically induced long-term potentiation (LTP). Synaptic plasticity in LTP has been known to involve structural changes at synapses including reorganization of the actin cytoskeleton and de novo formation of spines. While LTP-induced formation and growth of postsynaptic spines have been reported, little is known about associated structural changes in presynaptic boutons. Mossy fiber synapses are assumed to exhibit presynaptic LTP expression and are easily identified by EM. In slice cultures from wildtype mice, we found that chemical LTP increased the length of the presynaptic membrane of mossy fiber boutons, associated with a de novo formation of small spines and an increase in the number of active zones. Of note, these changes were not observed in slice cultures from Munc13-1 knockout mutants exhibiting defective vesicle priming. These findings show that activation of hippocampal mossy fibers induces pre- and postsynaptic structural changes at mossy fiber synapses that can be monitored by EM.
Resumo:
The mammalian mitochondrial (mt) genome codes for only 13 proteins, which are essential components in the process of oxidative phosphorylation of ADP into ATP. Synthesis of these proteins relies on a proper mt translation machinery. While 22 tRNAs and 2 rRNAs are also coded by the mt genome, all other factors including the set of aminoacyl-tRNA synthetases (aaRSs) are encoded in the nucleus and imported. Investigation of mammalian mt aminoacylation systems (and mt translation in general) gains more and more interest not only in regard of evolutionary considerations but also with respect to the growing number of diseases linked to mutations in the genes of either mt-tRNAs, synthetases or other factors. Here we report on methodological approaches for biochemical, functional, and structural characterization of human/mammalian mt-tRNAs and aaRSs. Procedures for preparation of native and in vitro transcribed tRNAs are accompanied by recommendations for specific handling of tRNAs incline to structural instability and chemical fragility. Large-scale preparation of mg amounts of highly soluble recombinant synthetases is a prerequisite for structural investigations that requires particular optimizations. Successful examples leading to crystallization of four mt-aaRSs and high-resolution structures are recalled and limitations discussed. Finally, the need for and the state-of-the-art in setting up an in vitro mt translation system are emphasized. Biochemical characterization of a subset of mammalian aminoacylation systems has already revealed a number of unprecedented peculiarities of interest for the study of evolution and forensic research. Further efforts in this field will certainly be rewarded by many exciting discoveries.
Resumo:
The present study investigated the association between individual differences in sociosexual orientation and four aspects of body image in 156 male and 136 female students. While men were characterized by a less restricted sociosexual orientation, higher self-perceived physical attractiveness, and more pronounced self-rated physical assertiveness, women placed more emphasis on accentuation of body presentation. Structural equation modeling revealed significant positive relationships between sociosexual attitudes and physical attractiveness and accentuation of body presentation as well as between sociosexual behavior and physical attractiveness for the total sample. When introducing sex as a grouping variable, the attitudinal and behavioral components of sociosexuality were reliably related to both physical attractiveness and accentuation of body presentation as two aspects of body image in men, but not in women. Furthermore, our findings suggest that accentuation of body presentation represents a goal-directed behavior in men to increase the likelihood of having uncommitted sex but serves additional functions widely unrelated to unrestrictive sociosexual behavior in women.