106 resultados para Placental vascularity

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We aimed to induce neural stem (NSC) and progenitor cells (NPC) from human placental tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During pregnancy, trophoblasts grow to adapt the feto-maternal unit to fetal requirements. Aldosterone and cortisol levels increase, the latter being inactivated by a healthy placenta. By contrast, preeclamptic placental growth is reduced while aldosterone levels are low and placental cortisol tissue levels are high due to improper deactivation. Aldosterone acts as a growth factor in many tissues, whereas cortisol inhibits growth. We hypothesized that in preeclampsia low aldosterone and enhanced cortisol availability might mutually affect placental growth and function. Proliferation of cultured human trophoblasts was time- and dose-dependently increased with aldosterone (P < 0.04 to P < 0.0001) and inhibited by spironolactone and glucocorticoids (P < 0.01). Mineralo- and glucocorticoid receptor expression and activation upon agonist stimulation was verified by visualization of nuclear translocation of the receptors. Functional aldosterone deficiency simulated in pregnant mice by spironolactone treatment (15 μg/g body weight/day) led to a reduced fetal umbilical blood flow (P < 0.05). In rat (P < 0.05; R(2) = 0.2055) and human (X(2) = 3.85; P = 0.0249) pregnancy, placental size was positively related to plasma aldosterone. Autocrine production of these steroid hormones was excluded functionally and via the absence of specific enzymatic transcripts for CYP11B2 and CYP11B1. In conclusion, activation of mineralocorticoid receptors by maternal aldosterone appears to be required for trophoblast growth and a normal feto-placental function. Thus, low aldosterone levels and enhanced cortisol availability may be one explanation for the reduced placental size in preeclampsia and related disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate diffusion-weighted magnetic resonance (MR) imaging of the human placenta in fetuses with and fetuses without intrauterine growth restriction (IUGR) who were suspected of having placental insufficiency. MATERIALS AND METHODS: The study was approved by the local ethics committee, and written informed consent was obtained. The authors retrospectively evaluated 1.5-T fetal MR images from 102 singleton pregnancies (mean gestation ± standard deviation, 29 weeks ± 5; range, 21-41 weeks). Morphologic and diffusion-weighted MR imaging were performed. A region of interest analysis of the apparent diffusion coefficient (ADC) of the placenta was independently performed by two observers who were blinded to clinical data and outcome. Placental insufficiency was diagnosed if flattening of the growth curve was detected at obstetric ultrasonography (US), if the birth weight was in the 10th percentile or less, or if fetal weight estimated with US was below the 10th percentile. Abnormal findings at Doppler US of the umbilical artery and histopathologic examination of specimens from the placenta were recorded. The ADCs in fetuses with placental insufficiency were compared with those in fetuses of the same gestational age without placental insufficiency and tested for normal distribution. The t tests and Pearson correlation coefficients were used to compare these results at 5% levels of significance. RESULTS: Thirty-three of the 102 pregnancies were ultimately categorized as having an insufficient placenta. MR imaging depicted morphologic changes (eg, infarction or bleeding) in 27 fetuses. Placental dysfunction was suspected in 33 fetuses at diffusion-weighted imaging (mean ADC, 146.4 sec/mm(2) ± 10.63 for fetuses with placental insufficiency vs 177.1 sec/mm(2) ± 18.90 for fetuses without placental insufficiency; P < .01, with one false-positive case). The use of diffusion-weighted imaging in addition to US increased sensitivity for the detection of placental insufficiency from 73% to 100%, increased accuracy from 91% to 99%, and preserved specificity at 99%. CONCLUSION: Placental dysfunction associated with growth restriction is associated with restricted diffusion and reduced ADC. A decreased ADC used as an early marker of placental damage might be indicative of pregnancy complications such as IUGR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preeclampsia is associated with perinatal brain injury. Autologous placenta stem cell transplantation represents a promising future treatment option for neuroregeneration. The aim of this study was to compare the neuroregenerative capacity of preeclampsia-placenta stem cells to previously characterized placentas from uncomplicated pregnancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol, phospholipids, and other lipophilic molecules across cellular membranes. Recent data provide evidence that ABCA1 plays an important role in placental function but the exact cellular sites of ABCA1 action in the placenta remain controversial. To clarify this issue, we analyzed the cellular and subcellular localization of ABCA1 with immunocytochemistry, immunofluorescence and subsequent confocal or immunofluorescence microscopy in different types of isolated primary placenta cells: cytotrophoblast cells, amnion epithelial cells, villous macrophages (Hofbauer cells), and mesenchymal cells isolated from chorionic membrane and placental villi. After 12 h of cultivation, primary cytotrophoblast cells showed intensive membrane and cytoplasmic staining for ABCA1. After 24 h, with progressive syncytium formation, ABCA1 staining intensity was markedly reduced and ABCA1 was dispersed in the cytoplasm of the forming syncytial layer. In amnion epithelial cells, placental macrophages and mesenchymal cells, ABCA1 was predominantly localized at the cell membrane and cytoplasmic compartments partially corresponding to the endoplasmic reticulum. In these cell types, the ABCA1 staining intensity was not dependent on the cultivation time. In conclusion, ABCA1 shows marked expression levels in diverse placental cell types. The multitopic localization of ABCA1 in diverse human placental cells not all directly involved in materno-fetal exchange suggests that this protein may not only participate in transplacental lipid transport but could have additional regulatory functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2011 there were twelve themed workshops, four of which are summarized in this report. These workshops related to both basic science and clinical research into placental growth and nutrient sensing and were divided into 1) placenta: predicting future health; 2) roles of lipids in the growth and development of feto-placental unit; 3) placental nutrient sensing; 4) placental research to solve clinical problems: a translational approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Angiogenic signals are a vital signal of placental integrity. Aldosterone has recently been shown to enhance placental growth factor (PlGF) expression in the peripheral vasculature [1] and to promote trophoblast growth [2]. The plgf gene possesses a functional mineralocorticoid receptor responsive element in the promoter region. Objectives Thus, we hypothesized that aldosterone adapts placental angiogenesis to trophoblast growth by secreting PlGF. Methods The human choriocarcinoma cell line BeWo and first and third trimester human primary trophoblasts cells were subjected to several syncytialization signals. Upon visual confirmation, the cultured cells were subjected to either control conditions, the known stimulator forskolin, and increasing amounts of aldosterone (10−9 to 10−6 M) with and without the competitive aldosterone receptor blocker spironolactone. After 6 and 24 h of incubation, RNA and protein were extracted. PlGF transcripts were quantified by Taqman PCR normalized to several housekeeping genes. Protein expression was quantified by ELISA. Results PlGF mRNA expression increased 3-fold with forskolin in BeWo cells. In this cell line, aldosterone could slightly stimulate PlGF production. In non-syncytialized primary human first trimester trophoblasts, aldosterone did not exert a specific effect. In contrast, the term primary human trophoblasts did respond with a 2.5-fold increase after incubation with aldosterone (10−7 M) in the presence of forskolin to allow forming a syncytial layer. PlGF protein was already slightly upregulated following 6 h of incubation with aldosterone. Conclusion We concluded that aldosterone does regulate PlGF expression in specified conditions during pregnancy. Inappropriately low aldosterone levels such as in preeclampsia might such not only compromise plasma volume and trophoblast growth but also placental vascularization and systemic PlGF availability. These observations merit further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physiological pregnancy is associated with an increase in lipids from the first to the third trimester. This is a highly regulated response to satisfy energy and membrane demands of the developing fetus. Pregnancy disorders, such as pre-eclampsia, are associated with a dysregulation of lipid metabolism manifesting in increased maternal plasma lipid levels. In fetal placental tissue, only scarce information on the lipid profile is available, and data for gestational diseases are lacking. In the present study, we investigated the placental lipid content in control versus pre-eclamptic samples, with the focus on tissue phospholipid levels and composition. We found an increase in total phospholipid content as well as changes in individual phospholipid classes in pre-eclamptic placental tissues compared to controls. These alterations could be a source of placental pathological changes in pre-eclampsia, such as lipid peroxide insult or dysregulation of lipid transport across the syncytiotrophoblast.