5 resultados para Pilotprojekt
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
AIM Virtual patients (VPs) are a one-of-a-kind e-learning resource, fostering clinical reasoning skills through clinical case examples. The combination with face-to-face teaching is important for their successful integration, which is referred to as "blended learning". So far little is known about the use of VPs in the field of continuing medical education and residency training. The pilot study presented here inquired the application of VPs in the framework of a pediatric residency revision course. METHODS Around 200 participants of a pediatric nephology lecture ('nephrotic and nephritic syndrome in children') were offered two VPs as a wrap-up session at the revision course of the German Society for Pediatrics and Adolescent Medicine (DGKJ) 2009 in Heidelberg, Germany. Using a web-based survey form, different aspects were evaluated concerning the learning experiences with VPs, the combination with the lecture, and the use of VPs for residency training in general. RESULTS N=40 evaluable survey forms were returned (approximately 21%). The return rate was impaired by a technical problem with the local Wi-Fi firewall. The participants perceived the work-up of the VPs as a worthwhile learning experience, with proper preparation for diagnosing and treating real patients with similar complaints. Case presentations, interactivity, and locally and timely independent repetitive practices were, in particular, pointed out. On being asked about the use of VPs in general for residency training, there was a distinct demand for more such offers. CONCLUSION VPs may reasonably complement existing learning activities in residency training.
Resumo:
INTRODUCTION Inhaled drugs can only be effective if they reach the middle and small airways. This study introduces a system that combines a trans-nasal application of aerosols with noninvasive pressure support ventilation. METHODS In a pilot study, 7 COPD patients with GOLD stages II and III inhaled a radiolabeled marker dissolved in water via a trans-nasal route. The mean aerosol particle size was 5.5 µm. Each patient took part in two inhalation sessions that included two application methods and were at least 70 hours apart. During the first session ("passive method"), the patient inhaled the aerosol through an open tube system. The second session ("active method") included pressure support ventilation during the inhalation process. A gamma camera and planar scintigraphy was used to determine the distribution of aerosol particles in the patient's body and lung. RESULTS The pressure supported inhalation ("active method") results in an increased aerosol lung deposition compared to the passive method. Above all, we could demonstrate deposition in the lung periphery with relatively large aerosol particles (5.5 µm). DISCUSSION The results prove that the combination of trans-nasal inhalation with noninvasive pressure support ventilation leads to significantly increased particle deposition in the lung.