8 resultados para Phytopathogenic microorganisms
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To determine in vitro the action of chlorhexidine digluconate and different commercially available mouthrinses on oral microorganisms.
Resumo:
Children who grow up in environments that afford them a wide range of microbial exposures, such as traditional farms, are protected from childhood asthma and atopy. In previous studies, markers of microbial exposure have been inversely related to these conditions.
Resumo:
Most criticism about homeopathy concerns the lack of a scientific basis and theoretical models. In order to be accepted as a valid part of medical practice, a wellstructured research strategy for homeopathy is needed. This is often hampered by methodological problems as well as by gross underinvestment in the required academic resources. Fundamental research could make important contributions to our understanding of the homeopathic and high dilutions mechanisms of action. Since the pioneering works of Kolisko on wheat germination (Kolisko, 1923) and Junker on growth of microorganisms (paramecium, yeast, fungi) (Junker, 1928), a number of experiments have been performed either with healthy organisms (various physiological aspects of growth) or with artificially diseased organisms, which may react more markedly to homeopathic treatments than healthy ones. In the latter case, the preliminary stress may be either abiotic, e.g. heavy metals, or biotic, e.g. fungal and viral pathogens or nematode infection. Research has also been carried out into the applicability of homeopathic principles to crop growth and disease control (agrohomeopathy): because of the extreme dilutions used, the environmental impact is low and such treatments are well suited to the holistic approach of sustainable agriculture (Betti et al., 2006). Unfortunately, as Scofield reported in an extensive critical review (Scofield, 1984), there is little firm evidence to support the reliability of the reported results, due to poor experimental methodology and inadequate statistical analysis. Moreover, since there is no agricultural homeopathic pharmacopoeia, much work is required to find suitable remedies, potencies and dose levels.
Resumo:
BACKGROUND Findings from animal and human studies have indicated that an oily calcium hydroxide suspension (OCHS) may improve early wound healing in the treatment of periodontitis. Calcium hydroxide as the main component is well known for its antimicrobial activity, however at present the effect of OCHS on the influence of periodontal wound healing/regeneration is still very limited. The purpose of this in vitro study was to investigate the effect of OCHS on periodontopathogenic bacteria as well as on the attachment and proliferation of osteoblasts and periodontal ligament fibroblasts. METHODS Human alveolar osteoblasts (HAO) and periodontal ligament (PDL) fibroblasts were cultured on 3 concentrations of OCHS (2.5, 5 and 7.5 mg). Adhesion and proliferation were counted up to 48 h and mineralization was assayed after 1 and 2 weeks. Furthermore potential growth inhibitory activity on microorganisms associated with periodontal disease (e.g. Porphyromonas gingivalis, Tannerella forsythia, Aggregatibacter actinomycetemcomitans) as well as the influence of periodontopathogens and OCHS on the HAO and PDL fibroblasts counts were determined. RESULTS More than a 2-fold increase in adherent HAO cells was observed at 4 h following application of OCHS when compared to the control group (p = 0.007 for 2.5 mg). Proliferation of HAO cells at 48 h was stimulated by moderate concentrations (2.5 mg; 5 mg) of OCHS (each p < 0.001), whereas a high concentration (7.5 mg) of OCHS was inhibitory (p = 0.009). Mineralization was observed only for HAO cells treated with OCHS. OCHS did not exert any positive effect on attachment or proliferation of PDL fibroblasts. Although OCHS did not have an antibacterial effect, it did positively influence attachment and proliferation of HAO cells and PDL fibroblasts in the presence of periodontopathogens. CONCLUSIONS The present data suggests that OCHS promotes osteoblast attachment, proliferation and mineralization in a concentration-dependent manner and results are maintained in the presence of periodontal pathogens.
Resumo:
BACKGROUND There is confusion over the definition of the term "viability state(s)" of microorganisms. "Viability staining" or "vital staining techniques" are used to distinguish live from dead bacteria. These stainings, first established on planctonic bacteria, may have serious shortcomings when applied to multispecies biofilms. Results of staining techniques should be compared with appropriate microbiological data. DISCUSSION Many terms describe "vitality states" of microorganisms, however, several of them are misleading. Authors define "viable" as "capable to grow". Accordingly, staining methods are substitutes, since no staining can prove viability.The reliability of a commercial "viability" staining assay (Molecular Probes) is discussed based on the corresponding product information sheet: (I) Staining principle; (II) Concentrations of bacteria; (III) Calculation of live/dead proportions in vitro. Results of the "viability" kit are dependent on the stains' concentration and on their relation to the number of bacteria in the test. Generally this staining system is not suitable for multispecies biofilms, thus incorrect statements have been published by users of this technique.To compare the results of the staining with bacterial parameters appropriate techniques should be selected. The assessment of Colony Forming Units is insufficient, rather the calculation of Plating Efficiency is necessary. Vital fluorescence staining with Fluorescein Diacetate and Ethidium Bromide seems to be the best proven and suitable method in biofilm research.Regarding the mutagenicity of staining components users should be aware that not only Ethidium Bromide might be harmful, but also a variety of other substances of which the toxicity and mutagenicity is not reported. SUMMARY - The nomenclature regarding "viability" and "vitality" should be used carefully.- The manual of the commercial "viability" kit itself points out that the kit is not suitable for natural multispecies biofilm research, as supported by an array of literature.- Results obtained with various stains are influenced by the relationship between bacterial counts and the amount of stain used in the test. Corresponding vitality data are prone to artificial shifting.- As microbiological parameter the Plating Efficiency should be used for comparison.- Ethidium Bromide is mutagenic. Researchers should be aware that alternative staining compounds may also be or even are mutagenic.
Resumo:
BACKGROUND While multi-drug resistant organisms (MDRO) are a global phenomenon, there are significant regional differences in terms of prevalence. Traveling to countries with a high MDRO prevalence increases the risk of acquiring such an organism. In this study we determined risk factors for MDRO colonization among patients who returned from a healthcare system in a high-prevalence area (so-called transfer patients). Factors predicting colonization could serve as screening criteria to better target those at highest risk. METHODS This screening study included adult patients who had been exposed to a healthcare system abroad or in a high-prevalence region in Switzerland over the past six months and presented to our 950-bed tertiary care hospital between January 1, 2012 and December 31, 2013, a 24-month period. Laboratory screening tests focused on Gram-negative MDROs and methicillin-resistant Staphylococcus aureus (MRSA). RESULTS A total of 235 transfer patients were screened and analyzed, of which 43 (18 %) were positive for an MDRO. Most of them yielded Gram-negative bacteria (42; 98 %), with only a single screening revealing MRSA (2 %); three screenings showed a combination of Gram-negative bacteria and MRSA. For the risk factor analysis we focused on the 42 Gram-negative MDROs. Most of them were ESBL-producing Escherichia coli and Klebsiella pneumoniae while only two were carbapenemase producers. In univariate analysis, factors associated with screening positivity were hospitalization outside of Europe (p < 0.001), surgical procedure in a hospital abroad (p = 0.007), and - on admission to our hospital - active infection (p = 0.002), antibiotic treatment (p = 0.014) and presence of skin lesions (p = 0.001). Only hospitalization outside of Europe (Odds Ratio, OR 3.2 (95 % CI 1.5- 6.8)) and active infection on admission (OR 2.7 (95 % CI 1.07- 6.6)) remained as independent predictors of Gram-negative MDRO colonization. CONCLUSION Our data suggest that a large proportion of patients (i.e., 82 %) transferred to Switzerland from hospitals in high MDRO prevalence areas are unnecessarily screened for MDRO colonization. Basing our screening strategy on certain criteria (such as presence of skin lesions, active infection, antibiotic treatment, history of a surgical procedure abroad and hospitalization outside of Europe) promises to be a better targeted and more cost-effective strategy.