7 resultados para Physiological models
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Most criticism about homeopathy concerns the lack of a scientific basis and theoretical models. In order to be accepted as a valid part of medical practice, a wellstructured research strategy for homeopathy is needed. This is often hampered by methodological problems as well as by gross underinvestment in the required academic resources. Fundamental research could make important contributions to our understanding of the homeopathic and high dilutions mechanisms of action. Since the pioneering works of Kolisko on wheat germination (Kolisko, 1923) and Junker on growth of microorganisms (paramecium, yeast, fungi) (Junker, 1928), a number of experiments have been performed either with healthy organisms (various physiological aspects of growth) or with artificially diseased organisms, which may react more markedly to homeopathic treatments than healthy ones. In the latter case, the preliminary stress may be either abiotic, e.g. heavy metals, or biotic, e.g. fungal and viral pathogens or nematode infection. Research has also been carried out into the applicability of homeopathic principles to crop growth and disease control (agrohomeopathy): because of the extreme dilutions used, the environmental impact is low and such treatments are well suited to the holistic approach of sustainable agriculture (Betti et al., 2006). Unfortunately, as Scofield reported in an extensive critical review (Scofield, 1984), there is little firm evidence to support the reliability of the reported results, due to poor experimental methodology and inadequate statistical analysis. Moreover, since there is no agricultural homeopathic pharmacopoeia, much work is required to find suitable remedies, potencies and dose levels.
Resumo:
Urea transporters (UTs) belonging to the solute carrier 14 (SLC14) family comprise two genes with a total of eight isoforms in mammals, UT-A1 to -A6 encoded by SLC14A2 and UT-B1 to -B2 encoded by SLC14A1. Recent efforts have been directed toward understanding the molecular and cellular mechanisms involved in the regulation of UTs using transgenic mouse models and heterologous expression systems, leading to important new insights. Urea uptake by UT-A1 and UT-A3 in the kidney inner medullary collecting duct and by UT-B1 in the descending vasa recta for the countercurrent exchange system are chiefly responsible for medullary urea accumulation in the urinary concentration process. Vasopressin, an antidiuretic hormone, regulates UT-A isoforms via the phosphorylation and trafficking of the glycosylated transporters to the plasma membrane that occurs to maintain equilibrium with the exocytosis and ubiquitin-proteasome degradation pathways. UT-B isoforms are also important in several cellular functions, including urea nitrogen salvaging in the colon, nitric oxide pathway modulation in the hippocampus, and the normal cardiac conduction system. In addition, genomic linkage studies have revealed potential additional roles for SLC14A1 and SLC14A2 in hypertension and bladder carcinogenesis. The precise role of UT-A2 and presence of the urea recycling pathway in normal kidney are issues to be further explored. This review provides an update of these advances and their implications for our current understanding of the SLC14 UTs.
Resumo:
Climate models predict more frequent and more severe extreme events (e.g., heat waves, extended drought periods, flooding) in many regions for the next decades. The impact of adverse environmental conditions on crop plants is ecologically and economically relevant. This review is focused on drought and heat effects on physiological status and productivity of agronomically important plants. Stomatal opening represents an important regulatory mechanism during drought and heat stress since it influences simultaneously water loss via transpiration and CO2 diffusion into the leaf apoplast which further is utilized in photosynthesis. Along with the reversible short-term control of stomatal opening, stomata and leaf epidermis may produce waxy deposits and irreversibly down-regulate the stomatal conductance and non-stomatal transpiration. As a consequence photosynthesis will be negatively affected. Rubisco activase—a key enzyme in keeping the Calvin cycle functional—is heat-sensitive and may become a limiting factor at elevated temperature. The accumulated reactive oxygen species (ROS) during stress represent an additional challenge under unfavorable conditions. Drought and heat cause accumulation of free amino acids which are partially converted into compatible solutes such as proline. This is accompanied by lower rates of both nitrate reduction and de novo amino acid biosynthesis. Protective proteins (e.g., dehydrins, chaperones, antioxidant enzymes or the key enzyme for proline biosynthesis) play an important role in leaves and may be present at higher levels under water deprivation or high temperatures. On the whole plant level, effects on long-distance translocation of solutes via xylem and phloem and on leaf senescence (e.g., anticipated, accelerated or delayed senescence) are important. The factors mentioned above are relevant for the overall performance of crops under drought and heat and must be considered for genotype selection and breeding programs.
Resumo:
Angiogenesis, the development of new blood vessels from preexisting ones, is driven by coordinated signaling pathways governed by specific molecules, hemodynamic forces, and endothelial and periendothelial cells. The processes involve adhesion, migration, and survival machinery within the target endothelial and periendothelial cells. Factors that interfere with any of these processes may therefore influence angiogenesis either positively (pro-angiogenesis) or negatively (antiangiogenesis). The avian area vasculosa (AV) and the avian chorioallantoic membrane (CAM) are two useful tools for studying both angiogenesis and antiangiogenesis since they are amenable to both intravascular and topical administration of target, agents, are relatively rapid assays, and can be adapted very easily to study angiogenesis-dependent processes, such as tumor growth. Both models provide a physiological setting that permits investigation of pro-angiogenic and antiangiogenic agent interactions in vivo.
Resumo:
Antisense oligonucleotides (AONs) hold promise for therapeutic correction of many genetic diseases via exon skipping, and the first AON-based drugs have entered clinical trials for neuromuscular disorders1, 2. However, despite advances in AON chemistry and design, systemic use of AONs is limited because of poor tissue uptake, and recent clinical reports confirm that sufficient therapeutic efficacy has not yet been achieved. Here we present a new class of AONs made of tricyclo-DNA (tcDNA), which displays unique pharmacological properties and unprecedented uptake by many tissues after systemic administration. We demonstrate these properties in two mouse models of Duchenne muscular dystrophy (DMD), a neurogenetic disease typically caused by frame-shifting deletions or nonsense mutations in the gene encoding dystrophin3, 4 and characterized by progressive muscle weakness, cardiomyopathy, respiratory failure5 and neurocognitive impairment6. Although current naked AONs do not enter the heart or cross the blood-brain barrier to any substantial extent, we show that systemic delivery of tcDNA-AONs promotes a high degree of rescue of dystrophin expression in skeletal muscles, the heart and, to a lesser extent, the brain. Our results demonstrate for the first time a physiological improvement of cardio-respiratory functions and a correction of behavioral features in DMD model mice. This makes tcDNA-AON chemistry particularly attractive as a potential future therapy for patients with DMD and other neuromuscular disorders or with other diseases that are eligible for exon-skipping approaches requiring whole-body treatment.
Resumo:
The validation of rodent models for restless legs syndrome (Willis-Ekbom disease) and periodic limb movements during sleep requires knowledge of physiological limb motor activity during sleep in rodents. This study aimed to determine the physiological time structure of tibialis anterior activity during sleep in mice and rats, and compare it with that of healthy humans. Wild-type mice (n = 9) and rats (n = 8) were instrumented with electrodes for recording the electroencephalogram and electromyogram of neck muscles and both tibialis anterior muscles. Healthy human subjects (31 ± 1 years, n = 21) underwent overnight polysomnography. An algorithm for automatic scoring of tibialis anterior electromyogram events of mice and rats during non-rapid eye movement sleep was developed and validated. Visual scoring assisted by this algorithm had inter-rater sensitivity of 92-95% and false-positive rates of 13-19% in mice and rats. The distribution of the time intervals between consecutive tibialis anterior electromyogram events during non-rapid eye movement sleep had a single peak extending up to 10 s in mice, rats and human subjects. The tibialis anterior electromyogram events separated by intervals <10 s mainly occurred in series of two-three events, their occurrence rate in humans being lower than in mice and similar to that in rats. In conclusion, this study proposes reliable rules for scoring tibialis anterior electromyogram events during non-rapid eye movement sleep in mice and rats, demonstrating that their physiological time structure is similar to that of healthy young human subjects. These results strengthen the basis for translational rodent models of periodic limb movements during sleep and restless legs syndrome/Willis-Ekbom disease.