17 resultados para Physical and chemical analysis
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The aim of this paper is to provide a review of general processes related to plasma sources, their transport, energization, and losses in the planetary magnetospheres. We provide background information as well as the most up-to-date knowledge of the comparative studies of planetary magnetospheres, with a focus on the plasma supply to each region of the magnetospheres. This review also includes the basic equations and modeling methods commonly used to simulate the plasma sources of the planetary magnetospheres. In this paper, we will describe basic and common processes related to plasma supply to each region of the planetary magnetospheres in our solar system. First, we will describe source processes in Sect. 1. Then the transport and energization processes to supply those source plasmas to various regions of the magnetosphere are described in Sect. 2. Loss processes are also important to understand the plasma population in the magnetosphere and Sect. 3 is dedicated to the explanation of the loss processes. In Sect. 4, we also briefly summarize the basic equations and modeling methods with a focus on plasma supply processes for planetary magnetospheres.
Resumo:
Snow in the environment acts as a host to rich chemistry and provides a matrix for physical exchange of contaminants within the ecosystem. The goal of this review is to summarise the current state of knowledge of physical processes and chemical reactivity in surface snow with relevance to polar regions. It focuses on a description of impurities in distinct compartments present in surface snow, such as snow crystals, grain boundaries, crystal surfaces, and liquid parts. It emphasises the microscopic description of the ice surface and its link with the environment. Distinct differences between the disordered air–ice interface, often termed quasi-liquid layer, and a liquid phase are highlighted. The reactivity in these different compartments of surface snow is discussed using many experimental studies, simulations, and selected snow models from the molecular to the macro-scale. Although new experimental techniques have extended our knowledge of the surface properties of ice and their impact on some single reactions and processes, others occurring on, at or within snow grains remain unquantified. The presence of liquid or liquid-like compartments either due to the formation of brine or disorder at surfaces of snow crystals below the freezing point may strongly modify reaction rates. Therefore, future experiments should include a detailed characterisation of the surface properties of the ice matrices. A further point that remains largely unresolved is the distribution of impurities between the different domains of the condensed phase inside the snowpack, i.e. in the bulk solid, in liquid at the surface or trapped in confined pockets within or between grains, or at the surface. While surface-sensitive laboratory techniques may in the future help to resolve this point for equilibrium conditions, additional uncertainty for the environmental snowpack may be caused by the highly dynamic nature of the snowpack due to the fast metamorphism occurring under certain environmental conditions. Due to these gaps in knowledge the first snow chemistry models have attempted to reproduce certain processes like the long-term incorporation of volatile compounds in snow and firn or the release of reactive species from the snowpack. Although so far none of the models offers a coupled approach of physical and chemical processes or a detailed representation of the different compartments, they have successfully been used to reproduce some field experiments. A fully coupled snow chemistry and physics model remains to be developed.
Resumo:
The 5th Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) states with very high certainty that anthropogenic emissions have caused measurable changes in the physical ocean environment. These changes are summarized with special focus on those that are predicted to have the strongest, most direct effects on ocean biological processes; namely, ocean warming and associated phenomena (including stratification and sea level rise) as well as deoxygenation and ocean acidification. The biological effects of these changes are then discussed for microbes (including phytoplankton), plants, animals, warm and cold-water corals, and ecosystems. The IPCC AR5 highlighted several areas related to both the physical and biological processes that required further research. As a rapidly developing field, there have been many pertinent studies published since the cut off dates for the AR5, which have increased our understanding of the processes at work. This study undertook an extensive review of recently published literature to update the findings of the AR5 and provide a synthesized review on the main issues facing future oceans. The level of detail provided in the AR5 and subsequent work provided a basis for constructing projections of the state of ocean ecosystems in 2100 under two the Representative Concentration Pathways RCP4.5 and 8.5. Finally the review highlights notable additions, clarifications and points of departure from AR5 provided by subsequent studies.
Resumo:
ABSTRACT: Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions.This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of nanoparticles in tissues and cells.This comprehensive article aims to provide a basis for scientists in nanoparticle research to integrate electron microscopic analyses into their study design and to select the appropriate microscopic strategy.
Resumo:
BACKGROUND AND OBJECTIVE: This prospective, clinical pilot trial compared the Short Form 36 Health Survey (SF-36) and a nine-item quality of recovery [Quality of Recovery 9 (QoR-9)] survey to assess the 1-week outcome after liver resection and prediction of postoperative complications from baseline values before liver resection. METHODS: In 19 patients, the SF-36 was recorded preoperatively (baseline) and on postoperative day (POD) 7. SF-36 z-values (means +/- SD) for the physical component summary (PCS) and mental component summary (MCS) were calculated. QoR-9 (score 0-18) was performed at baseline, POD1, POD3, POD5 and POD7. Descriptive analysis and effect sizes (d) were calculated. RESULTS: From baseline to POD7, PCS decreased from -0.38 +/- 1.30 to -2.10 +/- 0.76 (P = 0.002, d = -1.57) and MCS from -0.71 +/- 1.50 to -1.33 +/- 1.11 (P = 0.061, d = -0.46). QoR-9 was significantly lower at POD1, POD3 and POD5 compared with baseline (P < 0.050, d < -2.0), but not at POD7 (P = 0.060, d = -1.08). Baseline PCS was significantly lower with a high effect size in patients with complications (n = 12) compared with patients without complications (n = 7) (-0.76 +/- 1.46 vs. 0.27 +/- 0.56; P = 0.044, d = -0.84) but not baseline MCS (P = 0.831, d = -0.10) or baseline QoR-9 (P = 0.384, d = -0.44). CONCLUSIONS: The SF-36 indicates that liver resection surgery has a higher impact on physical health than on mental health. QoR-9 determines the feasible time course of recovery with a 1-week return to baseline. Preoperative impaired physical health might predict postoperative complications.
Resumo:
Large progress has been made in the past few years towards quantifying and understanding climate variability during past centuries. At the same time, present-day climate has been studied using state-of-the-art data sets and tools with respect to the physical and chemical mechanisms governing climate variability. Both the understanding of the past and the knowledge of the processes are important for assessing and attributing the anthropogenic effect on present and future climate. The most important time period in this context is the past approximately 100 years, which comprises large natural variations and extremes (such as long droughts) as well as anthropogenic influences, most pronounced in the past few decades. Recent and ongoing research efforts steadily improve the observational record of the 20th century, while atmospheric circulation models are used to underpin the mechanisms behind large climatic variations. Atmospheric chemistry and composition are important for understanding climate variability and change, and considerable progress has been made in the past few years in this field. The evolving integration of these research areas in a more comprehensive analysis of recent climate variability was reflected in the organisation of a workshop “Climate variability and extremes in the past 100 years” in Gwatt near Thun (Switzerland), 24–26 July 2006. The aim of this workshop was to bring together scientists working on data issues together with statistical climatologists, modellers, and atmospheric chemists to discuss gaps in our understanding of climate variability during the past approximately 100 years.
Resumo:
OBJECTIVE To summarize empirical studies on the effectiveness of psychological interventions in long-term rehabilitation after an acquired brain injury (ABI) in reducing depressive symptoms. DATA SOURCES A systematic literature search was conducted on MEDLINE, PsycINFO, Embase, and CINAHL to identify articles published between January 1990 and October 2011. Search terms included the 3 concepts (1) "brain injur*" or "stroke," (2) "psychotherap*" or "therapy" or "intervention" or "rehabilitation," and (3) "depress*." STUDY SELECTION Studies evaluating psychological interventions in patients after ABI were included. Time since injury was on average more than 1 year. Trials reported data on validated depression questionnaires before and after the psychological intervention. DATA EXTRACTION Two independent reviewers extracted information from the sample, the intervention, and the outcome of the included studies and calculated effect sizes (ESs) from depression questionnaires. Thirteen studies were included in a pre-post analysis. Seven studies were eligible for a meta-analysis of ESs in active interventions and control conditions. DATA SYNTHESIS Pre-post ESs were significant in 4 of 13 studies. The overall ES of .69 (95% confidence interval [CI], .29-1.09) suggests a medium effectiveness of psychological interventions on depressive symptoms compared with control conditions. Moderator analysis of the number of sessions and adequate randomization procedure did not show significant ES differences between strata. Studies with adequate randomization did not, however, suggest the effectiveness of psychological interventions on depressive symptoms after ABI. CONCLUSIONS Psychological interventions are a promising treatment option for depressive symptoms in long-term rehabilitation after ABI. Since only a few adequately randomized controlled trials (RCTs) exist, more RCTs are required to confirm this initial finding.
Resumo:
Ultraviolet-ozone treatment is used as a standard surface cleaning procedure for removal of molecular organic contamination from analytical and sensing devices. Here, it is applied for injection-molded polymer microcantilevers before characterization and sensing experiments. This article examines the effects of the surface cleaning process using commercial equipment, in particular on the performance and mechanical properties of the cantilevers. It can be shown that the first chemical aging process essentially consist of the cross linking of the polymer chains together with a physical aging of the material. For longer exposure, the expected thermo-oxidative formation of carbonyl groups sets in and an exposure dependent chemical degradation can be detected. A process time of 20 min was found suitable as a trade-off between cleaning and stability
Resumo:
BACKGROUND Rheumatic heart disease accounts for up to 250 000 premature deaths every year worldwide and can be regarded as a physical manifestation of poverty and social inequality. We aimed to estimate the prevalence of rheumatic heart disease in endemic countries as assessed by different screening modalities and as a function of age. METHODS We searched Medline, Embase, the Latin American and Caribbean System on Health Sciences Information, African Journals Online, and the Cochrane Database of Systematic Reviews for population-based studies published between Jan 1, 1993, and June 30, 2014, that reported on prevalence of rheumatic heart disease among children and adolescents (≥5 years to <18 years). We assessed prevalence of clinically silent and clinically manifest rheumatic heart disease in random effects meta-analyses according to screening modality and geographical region. We assessed the association between social inequality and rheumatic heart disease with the Gini coefficient. We used Poisson regression to analyse the effect of age on prevalence of rheumatic heart disease and estimated the incidence of rheumatic heart disease from prevalence data. FINDINGS We included 37 populations in the systematic review and meta-analysis. The pooled prevalence of rheumatic heart disease detected by cardiac auscultation was 2·9 per 1000 people (95% CI 1·7-5·0) and by echocardiography it was 12·9 per 1000 people (8·9-18·6), with substantial heterogeneity between individual reports for both screening modalities (I(2)=99·0% and 94·9%, respectively). We noted an association between social inequality expressed by the Gini coefficient and prevalence of rheumatic heart disease (p=0·0002). The prevalence of clinically silent rheumatic heart disease (21·1 per 1000 people, 95% CI 14·1-31·4) was about seven to eight times higher than that of clinically manifest disease (2·7 per 1000 people, 1·6-4·4). Prevalence progressively increased with advancing age, from 4·7 per 1000 people (95% CI 0·0-11·2) at age 5 years to 21·0 per 1000 people (6·8-35·1) at 16 years. The estimated incidence was 1·6 per 1000 people (0·8-2·3) and remained constant across age categories (range 2·5, 95% CI 1·3-3·7 in 5-year-old children to 1·7, 0·0-5·1 in 15-year-old adolescents). We noted no sex-related differences in prevalence (p=0·829). INTERPRETATION We found a high prevalence of rheumatic heart disease in endemic countries. Although a reduction in social inequalities represents the cornerstone of community-based prevention, the importance of early detection of silent rheumatic heart disease remains to be further assessed. FUNDING UBS Optimus Foundation.
Resumo:
The bovine RPCI-42 BAC library was screened to construct a sequence-ready ~4 Mb single contig of 92 BAC clones on BTA 1q12. The contig covers the region between the genes KRTAP8P1 and CLIC6. This genomic segment in cattle is of special interest as it contains the dominant gene responsible for the hornless or polled phenotype in cattle. The construction of the BAC contig was initiated by screening the bovine BAC library with heterologous cDNA probes derived from 12 human genes of the syntenic region on HSA 21q22. Contig building was facilitated by BAC end sequencing and chromosome walking. During the construction of the contig, 165 BAC end sequences and 109 single-copy STS markers were generated. For comparative mapping of 25 HSA 21q22 genes, genomic PCR primers were designed from bovine EST sequences and the gene-associated STSs mapped on the contig. Furthermore, bovine BAC end sequence comparisons against the human genome sequence revealed significant matches to HSA 21q22 and allowed the in silico mapping of two new genes in cattle. In total, 31 orthologues of human genes located on HSA 21q22 were directly mapped within the bovine BAC contig, of which 16 genes have been cloned and mapped for the first time in cattle. In contrast to the existing comparative bovine-human RH maps of this region, these results provide a better alignment and reveal a completely conserved gene order in this 4 Mb segment between cattle, human and mouse. The mapping of known polled linked BTA 1q12 microsatellite markers allowed the integration of the physical contig map with existing linkage maps of this region and also determined the exact order of these markers for the first time. Our physical map and transcript map may be useful for positional cloning of the putative polled gene in cattle.
Resumo:
The description of seized illicit ecstasy tablets and other pressed drug products is an important step in casework. The physical and visual analysis and the description of the characteristics can be employed for intelligence purposes. Besides photography and manual measurements of dimensions, some optical instruments are employed for detailed measurements of physical characteristics. In this work, the method of 3D surface digitizing is introduced as a suitable tool for highly accurate documentation of small objects, especially for pressed drug products. The resulting detailed information about the geometry, and the results of an automatic comparison of apparently uniform tablets and coins with punches, can support drug intelligence.
Resumo:
All-sky Meteor Orbit System (AMOS) is a semi-autonomous video observatory for detection of transient events on the sky, mostly the meteors. Its hardware and software development and permanent placement on several locations in Slovakia allowed the establishment of Slovak Video Meteor Network (SVMN) monitoring meteor activity above the Central Europe. The data reduction, orbital determination and additional results from AMOS cameras–the SVMN database– as well as from observational expeditions on Canary Islands and in Canada provided dynamical and physical data for better understanding of mutual connections between parent bodies of asteroids and comets and their meteoroid streams. We present preliminary results on exceptional and rare meteor streams such as September ε Perseids (SPE) originated from unknown long periodic comet on a retrograde orbit, suspected asteroidal meteor stream of April α Comae Berenicids (ACO) in the orbit of meteorites Příbram and Neuschwanstein and newly observed meteor stream Camelopardalids (CAM) originated from Jupiter family comet 209P/Linear.
Resumo:
Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface.