6 resultados para Physical Conditioning, Animal
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
CONTEXT Enhanced Recovery after Surgery (ERAS) programs are multimodal care pathways that aim to decrease intra-operative blood loss, decrease postoperative complications, and reduce recovery times. OBJECTIVE To overview the use and key elements of ERAS pathways, and define needs for future clinical trials. EVIDENCE ACQUISITION A comprehensive systematic MEDLINE search was performed for English language reports published before May 2015 using the terms "postoperative period," "postoperative care," "enhanced recovery after surgery," "enhanced recovery," "accelerated recovery," "fast track recovery," "recovery program," "recovery pathway", "ERAS," and "urology" or "cystectomy" or "urologic surgery." EVIDENCE SYNTHESIS We identified 18 eligible articles. Patient counseling, physical conditioning, avoiding excessive alcohol and smoking, and good nutrition appeared to protect against postoperative complications. Fasting from solid food for only 6h and perioperative liquid-carbohydrate loading up to 2h prior to surgery appeared to be safe and reduced recovery times. Restricted, balanced, and goal-directed fluid replacement is effective when individualized, depending on patient morbidity and surgical procedure. Decreased intraoperative blood loss may be achieved by several measures. Deep vein thrombosis prophylaxis, antibiotic prophylaxis, and thermoregulation were found to help reduce postsurgical complications, as was a multimodal approach to postoperative nausea, vomiting, and analgesia. Chewing gum, prokinetic agents, oral laxatives, and an early resumption to normal diet appear to aid faster return to normal bowel function. Further studies should compare anesthetic protocols, refine analgesia, and evaluate the importance of robot-assisted surgery and the need/timing for drains and catheters. CONCLUSIONS ERAS regimens are multidisciplinary, multimodal pathways that optimize postoperative recovery. PATIENT SUMMARY This review provides an overview of the use and key elements of Enhanced Recovery after Surgery programs, which are multimodal, multidisciplinary care pathways that aim to optimize postoperative recovery. Additional conclusions include identifying effective procedures within Enhanced Recovery after Surgery programs and defining needs for future clinical trials.
Resumo:
The amygdala has been studied extensively for its critical role in associative fear conditioning in animals and humans. Noxious stimuli, such as those used for fear conditioning, are most effective in eliciting behavioral responses and amygdala activation when experienced in an unpredictable manner. Here, we show, using a translational approach in mice and humans, that unpredictability per se without interaction with motivational information is sufficient to induce sustained neural activity in the amygdala and to elicit anxiety-like behavior. Exposing mice to mere temporal unpredictability within a time series of neutral sound pulses in an otherwise neutral sensory environment increased expression of the immediate-early gene c-fos and prevented rapid habituation of single neuron activity in the basolateral amygdala. At the behavioral level, unpredictable, but not predictable, auditory stimulation induced avoidance and anxiety-like behavior. In humans, functional magnetic resonance imaging revealed that temporal unpredictably causes sustained neural activity in amygdala and anxiety-like behavior as quantified by enhanced attention toward emotional faces. Our findings show that unpredictability per se is an important feature of the sensory environment influencing habituation of neuronal activity in amygdala and emotional behavior and indicate that regulation of amygdala habituation represents an evolutionary-conserved mechanism for adapting behavior in anticipation of temporally unpredictable events.
Resumo:
The challenge for sustainable organic dairy farming is identification of cows that are well adapted to forage-based production systems. Therefore, the aim of this study was to compare the grazing behaviour, physical activity and metabolic profile of two different Holstein strains kept in an organic grazing system without concentrate supplementation. Twelve Swiss (HCH ; 566 kg body weight (BW) and 12 New Zealand Holstein-Friesian (HNZ ; 530 kg BW) cows in mid-lactation were kept in a rotational grazing system. After an adaptation period, the milk yield, nutrient intake, physical activity and grazing behaviour were recorded for each cow for 7 days. On three consecutive days, blood was sampled at 07:00, 12:00 and 17:00 h from each cow by jugular vein puncture. Data were analysed using linear mixed models. No differences were found in milk yield, but milk fat (3.69 vs. 4.05%, P = 0.05) and milk protein percentage (2.92 vs. 3.20%, P < 0.01) were lower in HCH than in HNZ cows. Herbage intake did not differ between strains, but organic matter digestibility was greater (P = 0.01) in HCH compared to HNZ cows. The HCH cows spent less (P = 0.04) time ruminating (439 vs. 469 min/day) and had a lower (P = 0.02) number of ruminating boli when compared to the HNZ cows. The time spent eating and physical activity did not differ between strains. Concentrations of IGF-1 and T3 were lower (P ≤ 0.05) in HCH than HNZ cows. In conclusion, HCH cows were not able to increase dry matter intake in order to express their full genetic potential for milk production when kept in an organic grazing system without concentrate supplementation. On the other hand, HNZ cows seem to compensate for the reduced nutrient availability better than HCH cows but could not use that advantage for increased production efficiency
Resumo:
With rising public concern for animal welfare, many major food chains and restaurants are changing their policies, strictly buying their eggs from non-cage producers. However, with the additional space in these cage-free systems to perform natural behaviours and movements comes the risk of injury. We evaluated the ability to maintain balance in adult laying hens with health problems (footpad dermatitis, keel damage, poor wing feather cover; n = 15) using a series of environmental challenges and compared such abilities with those of healthy birds (n = 5). Environmental challenges consisted of visual and spatial constraints, created using a head mask, perch obstacles, and static and swaying perch states. We hypothesized that perch movement, environmental challenges, and diminished physical health would negatively impact perching performance demonstrated as balance (as measured by time spent on perch and by number of falls of the perch) and would require more exaggerated correctional movements.We measured perching stability whereby each bird underwent eight 30-second trials on a static and swaying perch: with and without disrupted vision (head mask), with and without space limitations (obstacles) and combinations thereof. Video recordings (600 Hz) and a three-axis accelerometer/gyroscope (100 Hz) were used to measure the number of jumps/falls, latencies to leave the perch, as well as magnitude and direction of both linear and rotational balance-correcting movements. Laying hens with and without physical health problems, in both challenged and unchallenged environments, managed to perch and remain off the ground. We attribute this capacity to our training of the birds. Environmental challenges and physical state had an effect on the use of accelerations and rotations to stabilize themselves on a perch. Birds with physical health problems performed a higher frequency of rotational corrections to keep the body centered over the perch, whereas, for both health categories, environmental challenges required more intense and variable movement corrections. Collectively, these results provide novel empirical support for the effectiveness of training, and highlight that overcrowding, visual constraints, and poor physical health all reduce perching performance.