21 resultados para Phylogeny of Hyalidae

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Horses, asses and zebras belong to the genus Equus and are the only extant species of the family Equidae in the order Perissodactyla. In a previous work we demonstrated that a key factor in the rapid karyotypic evolution of this genus was evolutionary centromere repositioning, that is, the shift of the centromeric function to a new position without alteration of the order of markers along the chromosome. In search of previously undiscovered evolutionarily new centromeres, we traced the phylogeny of horse chromosome 5, analyzing the order of BAC markers, derived from a horse genomic library, in 7 Equus species (E. caballus, E. hemionus onager, E. kiang, E. asinus, E. grevyi, E. burchelli and E. zebra hartmannae). This analysis showed that repositioned centromeres are present in E. asinus (domestic donkey, EAS) chromosome 16 and in E. burchelli (Burchell's zebra, EBU) chromosome 17, confirming that centromere repositioning is a strikingly frequent phenomenon in this genus. The observation that the neocentromeres in EAS16 and EBU17 are in the same chromosomal position suggests that they may derive from the same event and therefore, E. asinus and E. burchelli may be more closely related than previously proposed; alternatively, 2 centromere repositioning events, involving the same chromosomal region, may have occurred independently in different lineages, pointing to the possible existence of hot spots for neocentromere formation. Our comparative analysis also showed that, while E. caballus chromosome 5 seems to represent the ancestral configuration, centric fission followed by independent fusion events gave rise to 3 different submetacentric chromosomes in other Equus lineages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter provides an overview on the DNA based phylogeny of the family Pasteurellaceae and the genetic relatedness between taxa taking into account the various gene targets and approaches applied in the literature. The classical 16S rRNA gene based phylogeny as well as phylogenies based on house-keeping genes are described. Moreover, strength and weakness of the different trees and their topology are discussed based on the phylogenetic groups resolved. The data should help to get a clearer picture on the recent, current and future classification and also provide information to genetic characterization of members of the family. The history of phylogeny applied to the family as well as the phylogenetic history of the family is thereby presented. In this way it is the story of the search for the optimal phylogenetic marker without giving a final conclusive suggestion but it is also a resource for choosing the appropriate gene target(s) for people investigating the phylogeny of groups of Pasteurellaceae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequences of the gene encoding the beta-subunit of the RNA polymerase (rpoB) were used to delineate the phylogeny of the family Pasteurellaceae. A total of 72 strains, including the type strains of the major described species as well as selected field isolates, were included in the study. Selection of universal rpoB-derived primers for the family allowed straightforward amplification and sequencing of a 560 bp fragment of the rpoB gene. In parallel, 16S rDNA was sequenced from all strains. The phylogenetic tree obtained with the rpoB sequences reflected the major branches of the tree obtained with the 16S rDNA, especially at the genus level. Only a few discrepancies between the trees were observed. In certain cases the rpoB phylogeny was in better agreement with DNA-DNA hybridization studies than the phylogeny derived from 16S rDNA. The rpoB gene is strongly conserved within the various species of the family of Pasteurellaceae. Hence, rpoB gene sequence analysis in conjunction with 16S rDNA sequencing is a valuable tool for phylogenetic studies of the Pasteurellaceae and may also prove useful for reorganizing the current taxonomy of this bacterial family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the Mycobacterium tuberculosis complex (MTBC) cause a serious disease with similar pathology, tuberculosis; in this review, bovine tuberculosis will be considered as disease caused by any member of the MTBC in bovids. Bovine tuberculosis is responsible for significant economic loss due to costly eradication programs and trade limitations and poses a threat to both endangered and protected species as well as to public health. We here give an overview on all members of the MTBC, focusing on their isolation from different animal hosts. We also review the recent advances made in elucidating the evolutionary and phylogenetic relationships of members of the MTBC. Because the nomenclature of the MTBC is controversial, its members have been considered species, subspecies or ecotypes, this review discusses the possible implications for diagnostics and the legal consequences of naming of new species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alveolar echinococcosis, caused by the tapeworm Echinococcus multilocularis, is one of the most severe parasitic diseases in humans and represents one of the 17 neglected diseases prioritised by the World Health Organisation (WHO) in 2012. Considering the major medical and veterinary importance of this parasite, the phylogeny of the genus Echinococcus is of considerable importance; yet, despite numerous efforts with both mitochondrial and nuclear data, it has remained unresolved. The genus is clearly complex, and this is one of the reasons for the incomplete understanding of its taxonomy. Although taxonomic studies have recognised E. multilocularis as a separate entity from the Echinococcus granulosus complex and other members of the genus, it would be premature to draw firm conclusions about the taxonomy of the genus before the phylogeny of the whole genus is fully resolved. The recent sequencing of E. multilocularis and E. granulosus genomes opens new possibilities for performing in-depth phylogenetic analyses. In addition, whole genome data provide the possibility of inferring phylogenies based on a large number of functional genes, i.e. genes that trace the evolutionary history of adaptation in E. multilocularis and other members of the genus. Moreover, genomic data open new avenues for studying the molecular epidemiology of E. multilocularis: genotyping studies with larger panels of genetic markers allow the genetic diversity and spatial dynamics of parasites to be evaluated with greater precision. There is an urgent need for international coordination of genotyping of E. multilocularis isolates from animals and human patients. This could be fundamental for a better understanding of the transmission of alveolar echinococcosis and for designing efficient healthcare strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genome predictions based on selected genes would be a very welcome approach for taxonomic studies, including DNA-DNA similarity, G+C content and representative phylogeny of bacteria. At present, DNA-DNA hybridizations are still considered the gold standard in species descriptions. However, this method is time-consuming and troublesome, and datasets can vary significantly between experiments as well as between laboratories. For the same reasons, full matrix hybridizations are rarely performed, weakening the significance of the results obtained. The authors established a universal sequencing approach for the three genes recN, rpoA and thdF for the Pasteurellaceae, and determined if the sequences could be used for predicting DNA-DNA relatedness within the family. The sequence-based similarity values calculated using a previously published formula proved most useful for species and genus separation, indicating that this method provides better resolution and no experimental variation compared to hybridization. By this method, cross-comparisons within the family over species and genus borders easily become possible. The three genes also serve as an indicator of the genome G+C content of a species. A mean divergence of around 1 % was observed from the classical method, which in itself has poor reproducibility. Finally, the three genes can be used alone or in combination with already-established 16S rRNA, rpoB and infB gene-sequencing strategies in a multisequence-based phylogeny for the family Pasteurellaceae. It is proposed to use the three sequences as a taxonomic tool, replacing DNA-DNA hybridization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is tempting to extrapolate research findings regarding the intensively studied Toxoplasma gondii to Neospora caninum. This is based on morphological and ultrastructural studies, the molecular phylogeny of both parasites, their wide host ranges in nature, their ability to invade many different cell types in vitro and the occurrence of homologous proteins in both species. However, as Innes and Mattsson point out, T. gondii is the most successful parasite worldwide, whereas N. caninum has a more limited host range. Thus, some of the most challenging questions are: (i) what is T. gondii doing that N. caninum is not doing, or is doing differently, that renders the former so much more successful? And (ii) can some of these features be exploited for the development of interventional tools to limit infection and pathology caused by N. caninum?

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pasteurellaceae are bacteria with an important role as primary or opportunistic, mainly respiratory, pathogens in domestic and wild animals. Some species of Pasteurellaceae cause severe diseases with high economic losses in commercial animal husbandry and are of great diagnostic concern. Because of new data on the phylogeny of Pasteurellaceae, their taxonomy has recently been revised profoundly, thus requiring an improved phenotypic differentiation procedure to identify the individual species of this family. A new and simplified procedure to identify species of Actinobacillus, Avibacterium, Gallibacterium, Haemophilus, Mannheimia, Nicoletella, and Pasteurella, which are most commonly isolated from clinical samples of diseased animals in veterinary diagnostic laboratories, is presented in the current study. The identification procedure was evaluated with 40 type and reference strains and with 267 strains from routine diagnostic analysis of various animal species, including 28 different bacterial species. Type, reference, and field strains were analyzed by 16S ribosomal RNA (rrs) and rpoB gene sequencing for unambiguous species determination as a basis to evaluate the phenotypic differentiation schema. Primary phenotypic differentiation is based on beta-nicotinamide adenine dinucleotide (beta-NAD) dependence and hemolysis, which are readily determined on the isolation medium. The procedure divides the 28 species into 4 groups for which particular biochemical reactions were chosen to identify the bacterial species. The phenotypic identification procedure allowed researchers to determine the species of 240 out of 267 field strains. The procedure is an easy and cost-effective system for the rapid identification of species of the Pasteurellaceae family isolated from clinical specimens of animals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Echinococcus granulosus is characterized by high intra-specific variability (genotypes G1-G10) and according to the new molecular phylogeny of the genus Echinococcus, the E. granulosus complex has been divided into E. granulosus sensu stricto (G1-G3), E. equinus (G4), E. ortleppi (G5), and E. canadensis (G6-G10). The molecular characterization of E. granulosus isolates is fundamental to understand the spatio-temporal epidemiology of this complex in many endemic areas with the simultaneous occurrence of different Echinococcus species and genotypes. To simplify the genotyping of the E. granulosus complex we developed a single-tube multiplex PCR (mPCR) allowing three levels of discrimination: (i) Echinococcus genus, (ii) E. granulosus complex in common, and (iii) the specific genotype within the E. granulosus complex. The methodology was established with known DNA samples of the different strains/genotypes, confirmed on 42 already genotyped samples (Spain: 22 and Bulgaria: 20) and then successfully applied on 153 unknown samples (Tunisia: 114, Algeria: 26 and Argentina: 13). The sensitivity threshold of the mPCR was found to be 5 ng Echinoccoccus DNA in a mixture of up to 1 µg of foreign DNA and the specificity was 100% when template DNA from closely related members of the genus Taenia was used. Additionally to DNA samples, the mPCR can be carried out directly on boiled hydatid fluid or on alkaline-lysed frozen or fixed protoscoleces, thus avoiding classical DNA extractions. However, when using Echinococcus eggs obtained from fecal samples of infected dogs, the sensitivity of the mPCR was low (<40%). Thus, except for copro analysis, the mPCR described here has a high potential for a worldwide application in large-scale molecular epidemiological studies on the Echinococcus genus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aim The Neotropical parrots (Arini) are an unusually diverse group which colonized South America in the Oligocene. The newly invaded Neotropics may have functioned as an underused adaptive zone and provided novel ecological opportunities that facilitated diversification. Alternatively, diversification may have been driven by ecological changes caused by Andean uplift and/or climate change from the Miocene onwards. Our aim was to find out whether Arini diversified in a classical adaptive radiation after their colonization of South America, or whether their diversification occurred later and was influenced by more recent environmental change. Location Neotropics. Methods We generated a time-calibrated phylogeny of more than 80% of all Arini species in order to analyse lineage diversification. This chronogram was also used as the basis for the reconstruction of morphological evolution within Arini using a multivariate ratio analysis of three size measurements. Results We found a concentration of size evolution and partitioning of size niches in the early history of Arini consistent with the process of adaptive radia- tion, but there were no signs of an early burst of speciation or a decrease in speci- ation rates through time. Although we detected no overall temporal shifts in diversification rates, we discovered two young, unexpectedly species-rich clades. Main conclusions Arini show signs of an early adaptive radiation, but we found no evidence of the slowdown in speciation rate generally considered a feature of island or lake radiations. Historical processes and environmental change from the Miocene onwards may have kept diversification rates roughly constant ever since the colonization of the Neotropics. Thus, Arini may not yet have reached equilibrium diversity. The lack of diversity-dependent speciation might be a general feature of adaptive radiations on a continental scale, and diversification processes on continents might therefore not be as ecologically limited as in isolated lakes or on oceanic islands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The diversification of organisms with a parasitic lifestyle is often tightly linked to the evolution of their host associations. If a tight host association exists, closely related species tend to attack closely related hosts; host associations are less stable if associations are determined by more plastic traits like parasitoid searching and oviposition behaviour. The pupal-parasitoids of the genus Ichneumon attack a variety of macrolepidopteran hosts.They are either monophagous or polyphagous, and therefore offer a promissing system to investigate the evolution of host associations. Ichneumon was previously divided into two groups based on general body shape; however, a stout shape has been suggested as an adaptation to buried host pupation sites, and might thus not represent a reliable phylogenetic character. Results: We here reconstruct the first molecular phylogeny of the genus Ichneumon using two mitochondrial (CO1 and NADH1) and one nuclear marker (28S). The resulting phylogeny only supports monophyly of Ichneumon when Ichneumon lugens Gravenhorst, 1829 (formerly in Chasmias, stat. rev.) and Ichneumon deliratorius Linnaeus, 1758 (formerly Coelichneumon) are included. Neither parasitoid species that attack hosts belonging to one family nor those attacking butterflies (Rhopalocera) form monophyletic clades. Ancestral state reconstructions suggest multiple transitions between searching for hosts above versus below ground and between a stout versus elongated body shape. A model assuming correlated evolution between the two characters was preferred over independent evolution of host-searching niche and body shape. Conclusions: Host relations, both in terms of phylogeny and ecology, evolved at a high pace in the genus Ichneumon. Numerous switches between hosts of different lepidopteran families have occurred, a pattern that seems to be the rule among idiobiont parasitoids. A stout body and antennal shape in the parasitoid female is confirmed as an ecological adaptation to host pupation sites below ground and has evolved convergently several times. Morphological characters that might be involved in adaptation to hosts should be avoided as diagnostic characters for phylogeny and classification, as they can be expected to show high levels of homoplasy.