77 resultados para Phi Delta Theta Fraternity.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Theta burst transcranial magnetic stimulation (TBS) may induce behavioural changes that outlast the stimulation period. The neurophysiological basis of these behavioural changes are currently under investigation. Given the evidence that cortical information processing relies on transient synchronization and desynchronization of neuronal assemblies, we set out to test whether TBS is associated with changes of neuronal synchronization as assessed by surface EEG. In four healthy subjects one TBS train of 600 pulses (200 bursts, each burst consisting of 3 pulses at 30 Hz, repeated at intervals of 100 ms) was applied over the right frontal eye field and EEG synchronization was assessed in a time-resolved manner over 60 min by using a non-overlapping moving window. For each time step the linear cross-correlation matrix for six EEG channels of the right and for the six homotopic EEG channels of the left hemisphere were computed and their largest eigenvalues used to assess changes of synchronization. Synchronization was computed for broadband EEG and for the delta, theta, alpha, beta and gamma frequency bands. In all subjects EEG synchronization of the stimulated hemisphere was significantly and persistently increased relative to EEG synchronization of the unstimulated hemisphere. This effect occurred immediately after TBS for the theta, alpha, beta and gamma frequency bands and 10-20 min after TBS for broadband and delta frequency band EEG. Our results demonstrate that TBS is associated with increased neuronal synchronization of the cerebral hemisphere ipsilateral to the stimulation site relative to the unstimulated hemisphere. We speculate that enhanced synchronization interferes with cortical information processing and thus may be a neurophysiological correlate of the impaired behavioural performance detected previously.
Resumo:
Based on an integrative brain model which focuses on memory-driven and EEG state-dependent information processing for the organisation of behaviour, we used the developmental changes of the awake EEG to further investigate the hypothesis that neurodevelopmental abnormalities (deviations in organisation and reorganisation of cortico-cortical connectivity during development) are involved in the pathogenesis of schizophrenia. First-episode, neuroleptic-naive schizophrenics and their matched controls and three age groups of normal adolescents were studied (total: 70 subjects). 19-channel EEG delta-theta, alpha and beta spectral band centroid frequencies during resting (baseline) and after verbal stimuli were used as measure of the level of attained complexity and momentary excitability of the neuronal network (working memory). Schizophrenics compared with all control groups showed lower delta-theta activity centroids and higher alpha and beta activity centroids. Reactivity centroids (centroid after stimulus minus centroid during resting) were used as measure of update of working memory. Schizophrenics showed partial similarities in delta-theta and beta reactivity centroids with the 11-year olds and in alpha reactivity centroids with the 13-year olds. Within the framework of our model, the results suggest multifactorially elicited imbalances in the level of excitability of neuronal networks in schizophrenia, resulting in network activation at dissociated complexity levels, partially regressed and partially prematurely developed. It is hypothesised that activation of age- and/or state-inadequate representations for coping with realities becomes manifest as productive schizophrenic symptoms. Thus, the results support some aspects of the neurodevelopmental hypothesis.
Resumo:
A study was designed to investigate the effect of medetomidine sedation on quantitative electroencephalography (q-EEG) in healthy young and adult cats to determine objective guidelines for diagnostic EEG recordings and interpretation. Preliminary visual examination of EEG recordings revealed high-voltage low-frequency background activity. Spindles, k-complexes and vertex sharp transients characteristic of sleep or sedation were superimposed on a low background activity. Neither paroxysmal activity nor EEG burst-suppression were observed. The spectral analysis of q-EEG included four parameters, namely, relative power (%), and mean, median and peak frequency (Hz) of all four frequency bands (delta, theta, alpha and beta). The findings showed a prevalence of slow delta and theta rhythms as opposed to fast alpha and beta rhythms in both young (group A) and adult (group B) cats. A posterior gradient was reported for the theta band and an anterior gradient for the alpha and beta bands in both groups, respectively. The relative power value in group B compared to group A was significantly higher for theta, alpha and beta bands, and lower for the delta band. The mean and median frequency values in group B was significantly higher for delta, theta and beta bands and lower for the alpha band. The study has shown that a medetomidine sedation protocol for feline EEG may offer a method for investigating bio-electrical cortical activity. The use of q-EEG analysis showed a decrease in high frequency bands and increased activity of the low frequency band in healthy cats under medetomidine sedation.
Resumo:
We investigated brain electric field signatures of subjective feelings after chewing regular gum or gum base without flavor. 19-channel eyes-closed EEG from 20 healthy males before and after 5 minutes of chewing the two gum types in random sequence was source modeled in the frequency domain using the FFT-Dipole-Approximation. 3-dimensional brain locations and strengths (Global Field Power, GFP) of the equivalent sources of five frequency bands were computed as changes from pre-chewing baseline. Gum types differed (ANOVA) in pre-post changes of source locations for the alpha-2 band (to anterior and right after regular gum, opposite after gum base) and beta-2 band (to anterior and inferior after regular gum, opposite after gum base), and of GFP for delta-theta, alpha-2 and beta-1 (regular gum: increase, gum base: decrease). Subjective feeling changed to more positive values after regular gum than gum base (ANOVA).—Thus, chewing gum with and without taste-smell activates different brain neuronal populations.
Resumo:
An ascent to altitude has been shown to result in more central apneas and a shift towards lighter sleep in healthy individuals. This study employs spectral analysis to investigate the impact of respiratory disturbances (central/obstructive apnea and hypopnea or periodic breathing) at moderate altitude on the sleep electroencephalogram (EEG) and to compare EEG changes resulting from respiratory disturbances and arousals. Data were collected from 51 healthy male subjects who spent 1 night at moderate altitude (2590 m). Power density spectra of Stage 2 sleep were calculated in a subset (20) of these participants with sufficient artefact-free data for (a) epochs with respiratory events without an accompanying arousal, (b) epochs containing an arousal and (c) epochs of undisturbed Stage 2 sleep containing neither arousal nor respiratory events. Both arousals and respiratory disturbances resulted in reduced power in the delta, theta and spindle frequency range and increased beta power compared to undisturbed sleep. The similarity of the EEG changes resulting from altitude-induced respiratory disturbances and arousals indicates that central apneas are associated with micro-arousals, not apparent by visual inspection of the EEG. Our findings may have implications for sleep in patients and mountain tourists with central apneas and suggest that respiratory disturbances not accompanied by an arousal may, none the less, impact sleep quality and impair recuperative processes associated with sleep more than previously believed.
Resumo:
The capacity to inhibit inappropriate responses is crucial for goal-directed behavior. Inhibiting such responses seems to come more easily to some of us than others, however. From where do these individual differences originate? Here, we measured 263 participants' neural baseline activation using resting electroencephalogram. Then, we used this stable neural marker to predict a reliable electrophysiological index of response inhibition capacity in the cued Continuous Performance Test, the NoGo-Anteriorization (NGA). Using a source-localization technique, we found that resting delta, theta, and alpha1 activity in the left middle frontal gyrus and resting alpha1 activity in the right inferior frontal gyrus were negatively correlated with the NGA. As a larger NGA is thought to represent better response inhibition capacity, our findings demonstrate that lower levels of resting slow-wave oscillations in the lateral prefrontal cortex, bilaterally, are associated with a better response inhibition capacity.
Resumo:
After stroke, the injured brain undergoes extensive reorganization and reconnection. Sleep may play a role in synaptic plasticity underlying stroke recovery. To test this hypothesis, we investigated topographic sleep electroencephalographic characteristics, as a measure of brain reorganization, in the acute and chronic stages after hemispheric stroke. We studied eight patients with unilateral stroke in the supply territory of the middle cerebral artery and eight matched controls. All subjects underwent a detailed clinical examination including assessment of stroke severity, sleep habits and disturbances, anxiety and depression, and high-density electroencephalogram examination with 128 electrodes during sleep. The recordings were performed within 10 days after stroke in all patients, and in six patients also 3 months later. During sleep, we found higher slow-wave and theta activity over the affected hemisphere in the infarct area in the acute and chronic stage of stroke. Slow-wave, theta activity and spindle frequency range power over the affected hemisphere were lower in comparison to the non-affected side in a peri-infarct area in the patients' group, which persisted over time. Conversely, in wakefulness, only an increase of delta, theta activity and a slowing of alpha activity over the infarct area were found. Sleep slow-wave activity correlated with stroke severity and outcome. Stroke might have differential effects on the generation of delta activity in wakefulness and sleep slow waves (1-8 Hz). Sleep electroencephalogram changes over both the affected and non-affected hemispheres reflect the acute dysfunction caused by stroke and the plastic changes underlying its recovery. Moreover, these changes correlate with stroke severity and outcome.
Resumo:
The traditional view of a predominant inferior parietal representation of gestures has been recently challenged by neuroimaging studies demonstrating that gesture production and discrimination may critically depend on inferior frontal lobe function. The aim of the present work was therefore to investigate the effect of transient disruption of these brain sites by continuous theta burst stimulation (cTBS) on gesture production and recognition.
Resumo:
Improvements of language production in aphasic patients have been reported following repeated 1-Hz transcranial magnetic stimulation over the nondamaged right hemisphere. Most studies examined aphasic patients in the chronic phase. The effect of transcranial magnetic stimulation application in acute or subacute patients has not been systematically studied. We aimed to evaluate whether continuous theta burst stimulation, an inhibitory protocol with a shorter application time than the common 1-Hz protocol, is able to improve naming performance in aphasic patients in different poststroke phases.