8 resultados para Phase generated carrier (PGC)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The primary objective of this study was to clinically and histologically evaluate periodontal wound healing/regeneration following surgical implantation of recombinant human growth/differentiation factor-5 (rhGDF-5) adsorbed onto a particulate ?-tricalcium phosphate (?-TCP) carrier rhGDF-5/?-TCP into periodontal defects in man.
Resumo:
To present the safety profile, the early healing phase and the clinical outcomes at 24 weeks following treatment of human intrabony defects with open flap debridement (OFD) alone or with OFD and rhGDF-5 adsorbed onto a particulate β-tricalcium phosphate (β-TCP) carrier. Twenty chronic periodontitis patients, each with at least one tooth exhibiting a probing depth ≥6 mm and an associated intrabony defect ≥4 mm entered the study. Ten subjects (one defect/patient) were randomized to receive OFD alone (control) and ten subjects OFD combined with rhGDF-5/β-TCP. Blood samples were collected at screening, and at weeks 2 and 24 to evaluate routine hematology and clinical chemistry, rhGDF-5 plasma levels, and antirhGDF-5 antibody formation. Plaque and gingival indices, bleeding on probing, probing depth, clinical attachment level, and radiographs were recorded pre- and 24 weeks postsurgery. Comparable safety profiles were found in the two treatment groups. Neither antirhGDF-5 antibody formation nor relevant rhGDF-5 plasma levels were detected in any patient. At 6 months, treatment with OFD + rhGDF-5/β-TCP resulted in higher but statistically not significant PD reduction (3.7 ± 1.2 vs. 3.1 ± 1.8 mm; p = 0.26) and CAL gain (3.2 ± 1.7 vs. 1.7 ± 2.2 mm; p = 0.14) compared to OFD alone. In the tested concentration, the use of rhGDF-5/β-TCP appeared to be safe and the material possesses a sound biological rationale. Thus, further adequately powered, randomized controlled clinical trials are warranted to confirm the clinical relevance of this new approach in regenerative periodontal therapy. rhGDF-5/β-TCP may represent a promising new techology in regenerative periodontal therapy.
Resumo:
The GOCE satellite was orbiting the Earth in a Sun-synchronous orbit at a very low altitude for more than 4 years. This low orbit and the availability of high-quality data make it worthwhile to assess the contribution of GOCE GPS data to the recovery of both the static and time-variable gravity fields. We use the kinematic positions of the official GOCE precise science orbit (PSO) product to perform gravity field determination using the Celestial Mechanics Approach. The generated gravity field solutions reveal severe systematic errors centered along the geomagnetic equator. Their size is significantly coupled with the ionospheric density and thus generally increasing over the mission period. The systematic errors may be traced back to the kinematic positions of the PSO product and eventually to the ionosphere-free GPS carrier phase observations used for orbit determination. As they cannot be explained by the current higher order ionospheric correction model recommended by the IERS Conventions 2010, an empirical approach is presented by discarding GPS data affected by large ionospheric changes. Such a measure yields a strong reduction of the systematic errors along the geomagnetic equator in the gravity field recovery, and only marginally reduces the set of useable kinematic positions by at maximum 6 % for severe ionosphere conditions. Eventually it is shown that GOCE gravity field solutions based on kinematic positions have a limited sensitivity to the largest annual signal related to land hydrology.
Resumo:
In aerobic eukaryotic cells, the high energy metabolite ATP is generated mainly within the mitochondria following the process of oxidative phosphorylation. The mitochondrial ATP is exported to the cytoplasm using a specialized transport protein, the ADP/ATP carrier, to provide energy to the cell. Any deficiency or dysfunction of this membrane protein leads to serious consequences on cell metabolism and can cause various diseases such as muscular dystrophy. Described as a decisive player in the programmed cell death, it was recently shown to play a role in cancer. The objective of this review is to summarize the current knowledge of the involvement of the ADP/ATP carrier, encoded by the SLC25A4, SLC25A5, SLC25A6 and SLC25A31 genes, in human diseases and of the efforts made at designing different model systems to study this carrier and the associated pathologies through biochemical, genetic, and structural approaches.
Resumo:
BACKGROUND It is unclear how complex pathophysiological mechanisms that result in early brain injury (EBI) after subarachnoid hemorrhage (SAH) are triggered. We investigate how peak intracranial pressure (ICP), amount of subarachnoid blood, and hyperacute depletion of cerebral perfusion pressure (CPP) correlate to the onset of EBI following experimental SAH. METHODS An entire spectrum of various degrees of SAH severities measured as peak ICP was generated and controlled using the blood shunt SAH model in rabbits. Standard cardiovascular monitoring, ICP, CPP, and bilateral regional cerebral blood flow (rCBF) were continuously measured. Cells with DNA damage and neurodegeneration were detected using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Fluoro-jade B (FJB). RESULTS rCBF was significantly correlated to reduction in CPP during the initial 15 min after SAH in a linear regression pattern (r (2) = 0.68, p < 0.001). FJB- and TUNEL-labeled cells were linearly correlated to reduction in CPP during the first 3 min of hemorrhage in the hippocampal regions (FJB: r (2) = 0.50, p < 0.01; TUNEL: r (2) = 0.35, p < 0.05), as well as in the basal cortex (TUNEL: r (2) = 0.58, p < 0.01). EBI occurred in animals with severe (relative CPP depletion >0.4) and moderate (relative CPP depletion >0.25 but <0.4) SAH. Neuronal cell death was equally detected in vulnerable and more resistant brain regions. CONCLUSIONS The degree of EBI in terms of neuronal cell degeneration in both the hippocampal regions and the basal cortex linearly correlates with reduced CPP during hyperacute SAH. Temporary CPP reduction, however, is not solely responsible for EBI but potentially triggers processes that eventually result in early brain damage.
Resumo:
BACKGROUND Giant cell arteritis is an immune-mediated disease of medium and large-sized arteries that affects mostly people older than 50 years of age. Treatment with glucocorticoids is the gold-standard and prevents severe vascular complications but is associated with substantial morbidity and mortality. Tocilizumab, a humanised monoclonal antibody against the interleukin-6 receptor, has been associated with rapid induction and maintenance of remission in patients with giant cell arteritis. We therefore aimed to study the efficacy and safety of tocilizumab in the first randomised clinical trial in patients with newly diagnosed or recurrent giant cell arteritis. METHODS In this single centre, phase 2, randomised, double-blind, placebo-controlled trial, we recruited patients aged 50 years and older from University Hospital Bern, Switzerland, who met the 1990 American College of Rheumatology criteria for giant cell arteritis. Patients with new-onset or relapsing disease were randomly assigned (2:1) to receive either tocilizumab (8 mg/kg) or placebo intravenously. 13 infusions were given in 4 week intervals until week 52. Both groups received oral prednisolone, starting at 1 mg/kg per day and tapered down to 0 mg according to a standard reduction scheme defined in the study protocol. Allocation to treatment groups was done using a central computerised randomisation procedure with a permuted block design and a block size of three, and concealed using central randomisation generated by the clinical trials unit. Patients, investigators, and study personnel were masked to treatment assignment. The primary outcome was the proportion of patients who achieved complete remission of disease at a prednisolone dose of 0·1 mg/kg per day at week 12. All analyses were intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01450137. RESULTS Between March 3, 2012, and Sept 9, 2014, 20 patients were randomly assigned to receive tocilizumab and prednisolone, and ten patients to receive placebo and glucocorticoid; 16 (80%) and seven (70%) patients, respectively, had new-onset giant cell arteritis. 17 (85%) of 20 patients given tocilizumab and four (40%) of ten patients given placebo reached complete remission by week 12 (risk difference 45%, 95% CI 11-79; p=0·0301). Relapse-free survival was achieved in 17 (85%) patients in the tocilizumab group and two (20%) in the placebo group by week 52 (risk difference 65%, 95% CI 36-94; p=0·0010). The mean survival-time difference to stop glucocorticoids was 12 weeks in favour of tocilizumab (95% CI 7-17; p<0·0001), leading to a cumulative prednisolone dose of 43 mg/kg in the tocilizumab group versus 110 mg/kg in the placebo group (p=0·0005) after 52 weeks. Seven (35%) patients in the tocilizumab group and five (50%) in the placebo group had serious adverse events. INTERPRETATION Our findings show, for the first time in a trial setting, the efficacy of tocilizumab in the induction and maintenance of remission in patients with giant cell arteritis. FUNDING Roche and the University of Bern.
Resumo:
BACKGROUND INFORMATION The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo-erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. RESULTS In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo-erythrocytic schizogony in vitro, leading to impaired parasite maturation. CONCLUSIONS Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red-blood-cell-infective merozoites.