9 resultados para Perylenc adsorption studies

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The redox chemistry and the related surface phase behavior of Safranine (SAF) and Janus Green B (JGB) have been studied by means of cyclic voltammetry in combination with in situ Scanning Tunneling Microscopy using HOPG (Highly Oriented Pyrolytic Graphite) and single crystalline Cu(1 0 0) as model substrates, both revealing different widths of the accessible potential windows. JGB and SAF serve as prototypical heterocyclic suppressor/leveler additives that are used for the metallization of 3D-TSVs (3D Through Silicon Vias) following a classical "leveling" concept. SAF can be considered as the reductive decomposition product of JGB that is formed at the copper/electrolyte interface upon electroplating. Both additives reveal a pronounced pH-dependent redox-chemistry with redox-transitions lying close to or even beyond the anodic limit of the copper potential window. Affected by these redox-processes are in particular the aromatic cores of those heterocycles that can be (quasi)reversibly reduced by a two electron transfer process within the potential window of copper. Therefore we identify the reduced form of those dyes as the active components for the suppressing/leveling effect in copper plating. STM data clearly shows a dye surface phase behavior that is crucially determined by its potential-dependent redox-chemistry. This will be exemplarily discussed for the SAF dye. On chloride-modified Cu(1 0 0) mono-reduced SAF forms a structurally well-defined monolayer of cationic stacking polymers. However, this coupled anion/cation layer reveals only minor suppressing capabilities with respect to the copper dissolution and deposition processes. Complete reduction of the aromatic heterocycle finally leads to the 3D precipitation of hydrophobic reaction products. 3D clusters of this SAF precipitate are discussed as the active structural motif for the suppressing effect of these dyes. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-fouling surfaces that resist non-specific adsorption of proteins, bacteria, and higher organisms are of particular interest in diverse applications ranging from marine coatings to diagnostic devices and biomedical implants. Poly(ethylene glycol) (PEG) is the most frequently used polymer to impart surfaces with such non-fouling properties. Nevertheless, limitations in PEG stability have stimulated research on alternative polymers that are potentially more stable than PEG. Among them, we previously investigated poly(2-methyl-2-oxazoline) (PMOXA), a peptidomimetic polymer, and found that PMOXA shows excellent anti-fouling properties. Here, we compare the stability of films self-assembled from graft copolymers exposing a dense brush layer of PEG and PMOXA side chains, respectively, in physiological and oxidative media. Before media exposure both film types prevented the adsorption of full serum proteins to below the detection limit of optical waveguide in situ measurements. Before and after media exposure for up to 2 weeks, the total film thickness, chemical composition, and total adsorbed mass of the films were quantified using variable angle spectroscopic ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), and optical waveguide lightmode spectroscopy (OWLS), respectively. We found (i) that PMOXA graft copolymer films were significantly more stable than PEG graft copolymer films and kept their protein-repellent properties under all investigated conditions and (ii) that film degradation was due to side chain degradation rather than due to copolymer desorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical reactivity and structure properties of electrogenic bacteria, Geobacter sulfurreducens (Gs) were studied to explore the heterogeneous electron transfer at the bacteria/electrode interface using electrochemical and in-situ spectroscopic techniques. The redox behavior of Gs adsorbed on a gold electrode, which is modified with a ω-functionalized self-assembled monolayer (SAM) of alkanethiols, depends strongly on the terminal group. The latter interacts directly with outermost cytochromes embedded into the outer membrane of the Gs cells. The redox potential of bacterial cells bound electrostatically to a carboxyl-terminated SAM is close to that observed for bacteria attached to a bare gold electrode, revealing a high electronic coupling at the cell/SAM interface. The redox potentials of bacterial cells adsorbed on amino- and pyridyl-terminated SAMs are significantly different suggesting that the outermost cytochromes changes their conformation upon adsorption on these SAMs. No redox activity of Gs was found with CH3-, N(CH3)3+- and OH-terminated SAMs. Complementary in-situ spectroscopic studies on bacteria/SAMs/Au electrode assemblies were carried out to monitor structure changes of the bacterial cells upon polarization. Spectro-electrochemical techniques revealed the electrochemical turnover of the oxidized and reduced states of outer membrane cytochromes (OMCs) in Gs, providing evidence that the OMCs are responsible for the direct electron transfer to metal electrodes, such as gold or silver, during the electricity production. Furthermore, we observed spectroscopic signatures of the native structure of the OMCs and no conformational change during the oxidation/reduction process of the microorganisms. These findings indicate that the carboxyl-anchoring group provides biocompatible conditions for the outermost cytochromes of the Gs, which facilitate the heterogeneous electron transfer at the microorganism/electrode interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption interactions of thallium and its compounds with gold and quartz surfaces were investigated. Carrier-free amounts of thallium were produced in nuclear fusion reactions of alpha particles with thick gold targets. The method chosen for the studies was gas thermochromatography and varying the redox potential of the carrier gases. It was observed that thallium is extremely sensitive to trace amounts of oxygen and water, and can even be oxidized by the hydroxyl groups located on the quartz surface. The experiments on a quartz surface with O2, He, H2 gas in addition with water revealed the formation and deposition of only one thallium species – TlOH. The adsorption enthalpy was determined to be Δ HSiO2ads(TlOH) = −134 ± 5 kJ mol−1. A series of experiments using gold as stationary surface and different carrier gases resulted in the detection of two thallium species – metallic Tl (H2 as carrier gas) and TlOH (O2, O2+H2O and H2+H2O as pure carrier gas or carrier gas mixture) with Δ HAuads(Tl) = −270 ± 10 kJ mol− and Δ HAuads(TlOH) = −146 ± 3 kJ mol−1. These data demonstrate a weak interaction of TlOH with both quartz and gold surfaces. The data represent important information for the design of future experiments with the heavier homologue of Tl in group 13 of the periodic table – element 113 (E113).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Designs for deep geological respositories of nuclear waste include bentonite as a hydraulic and chemisorption buffer material to protect the biosphere from leakage of radionuclides. Bentonite is chosen because it is a cheap, naturally occurring material with the required properties. It consists essentially of montmorillonite, a swelling clay mineral. Upon contact with groundwater such clays can seal the repository by incorporating water in the interlayers of their crystalline structure. The intercalated water exhibits significantly different properties to bulk water in the surrounding interparticle pores, such as lower diffusion coefficients (González Sánchez et. al. 2008). This doctoral thesis presents water distribution and diffusion behavior on various time and space scales in montmorillonite. Experimental results are presented for Na- and Cs-montmorillonite samples with a range of bulk dry densities (0.8 to 1.7 g/cm3). The experimental methods employed were neutron scattering (backscattering, diffraction, time-of-flight), adsorption measurements (water, nitrogen) and tracer-through diffusion. For the tracer experiments the samples were fully saturated via the liquid phase under volume-constrained conditions. In contrast, for the neutron scattering experiments, the samples were hydrated via the vapor phase and subsequently compacted, leaving a significant fraction of interparticle pores unfilled with water. Owing to these differences in saturation, the water contents of the samples for neutron scattering were characterized by gravimetry whereas those for the tracer experiments were obtained from the bulk dry density. The amount of surface water in interlayer pores could be successfully discriminated from the amount of bulk-like water in interparticle pores in Na- and Csmontmorillonite using neutron spectroscopy. For the first time in the literature, the distribution of water between these two pore environments was deciphered as a function of gravimetric water content. The amount was compared to a geometrical estimation of the amount of interlayer and interparticle water determined by neutron diffraction and adsorption measurements. The relative abundances of the 1 to 4 molecular water layers in the interlayer were determined from the area ratios of the (001)-diffraction peaks. Depending on the characterization method, different fractions of surface water and interlayer water were obtained. Only surface and interlayer water exists in amontmorillonite with water contents up to 0.18 g/g according to spectroscopic measurements and up to 0.32 g/g according to geometrical estimations, respectively. At higher water contents, bulk-like and interparticle water also exists. The amounts increase monotonically, but not linearly, from zero to 0.33 g/g for bulk-like water and to 0.43 g/g for interparticle water. It was found that water most likely redistributes between the surface and interlayer sites during the spectroscopic measurements and therefore the reported fraction is relevant only below about -10 ºC (Anderson, 1967). The redistribution effect can explain the discrepancy in fractions between the methods. In a novel approach the fractions of water in different pore environments were treated as a fixed parameter to derive local diffusion coefficients for water from quasielastic neutron scattering data, in particular for samples with high water contents. Local diffusion coefficients were obtained for the 1 to 4 molecular water layers in the interlayer of 0.5·10–9, 0.9·10–9, 1.5·10–9 and 1.4·10–9 m²/s, respectively, taking account of the different water fractions (molecular water layer, bulk-like water). The diffusive transport of 22Na and HTO through Na-montmorillonite was measured on the laboratory experimental scale (i.e. cm, days) by tracer through-diffusion experiments. We confirmed that diffusion of HTO is independent of the ionic strength of the external solution in contact with the clay sample but dependent on the bulk dry density. In contrast, the diffusion of 22Na was found to depend on both the ionic strength of the pore solution and on the bulk dry density. The ratio of the pore and surface diffusion could be experimentally determined for 22Na from the dependence of the diffusion coefficient on the ionic strength. Activation energies were derived from the temperaturedependent diffusion coefficients via the Arrhenius relation. In samples with high bulk dry density the activation energies are slightly higher than those of bulk water whereas in low density samples they are lower. The activation energies as a function of ionic strengths of the pore solutions are similar for 22Na and HTO. The facts that (i) the slope of the logarithmic effective diffusion coefficients as a function of the logarithmic ionic strength is less than unity for low bulk dry densities and (ii) two water populations can be observed for high gravimetric water contents (low bulk dry densities) support the interlayer and interparticle porosity model proposed by Glaus et al. (2007), Bourg et al. (2006, 2007) and Gimmi and Kosakowski (2011).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND The activation of multiple pro- and anti-inflammatory mediators is a key feature in the pathophysiology of sepsis. Many of these mediators may directly contribute to organ dysfunction and determine disease severity. So far our ability to modulate these upregulated mediator pathways is very limited. Therefore the adsorption of such mediators via an extracorporeal circuit may be a beneficial intervention during sepsis. OBJECTIVES Recent technical innovations have made this intervention feasible. Both systems for exclusive mediator adsorption and for adsorption beside a conventional renal replacement therapy are now available. Some of the membranes can adsorb a broad range of mediators by rather unspecific binding, whereas others specifically adsorb endotoxin or mediators. DISCUSSION Whilst biochemical efficacy could be demonstrated by some of the systems, controlled and randomized studies demonstrating improved clinical endpoints are still lacking. Therefore the use of such therapies outside clinical studies cannot yet be recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical investigations of superheavy elements in the gas-phase, i.e. elements with Z≥104Z≥104, allow assessing the influence of relativistic effects on their chemical properties. Furthermore, for some superheavy elements and their compounds quite unique gas-phase chemical properties were predicted. The experimental verification of these properties yields supporting evidence for a firm assignment of the atomic number. Prominent examples are the high volatility observed for HsO4 or the very weak interaction of Cn with gold surfaces. The unique properties of HsO4 were exploited to discover the doubly-magic even–even nucleus 270Hs and the new isotope 271Hs. The combination of kinematic pre-separation and gas-phase chemistry allowed gaining access to a new class of relatively fragile compounds, the carbonyl complexes of elements Sg through Mt. A not yet resolved issue concerns the interaction of Fl with gold surfaces. While competing experiments agree on the fact that Fl is a volatile element, there are discrepancies concerning its adsorption on gold surfaces with respect to its daughter Cn. The elucidation of these and other questions amounts to the fascination that gas-phase chemical investigations exert on current research at the extreme limits of chemistry today.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the radioisotope 51Cr, we investigated the controls of cellular Cr accumulation in an array of marine phytoplankton grown in environmentally relevant Cr concentrations (1–10 nM). Given the affinity of Cr(III) for amorphous Fe-hydroxide mineral surfaces, and the formation of these mineral phases on the outside of phytoplankton cells, extracellular Cr was monitored in a model diatom species (Thalassiosira weissflogii) as extracellular Fe concentrations varied. Extracellular Cr in T. weissflogii increased with increasing extracellular Fe, demonstrating that Cr may be removed from seawater via extracellular adsorption to phytoplankton. Short-term Cr(VI) and Cr(III) uptake experiments performed with T. weissflogii demonstrated that Cr(III) was the primary oxidation state adsorbing to cells and being internalized by them. Cellular Cr:C ratios (<0.5 μmol Cr mol C−1) of the eight phytoplankton species surveyed were significantly lower than previously reported Cr:C ratios in marine particles with a high biogenic component (10–300 μmol Cr mol C−1). This indicates that Cr(III) likely accumulates in marine particles due to uptake and/or adsorption. Mass balance calculations demonstrate that surface water Cr deficits can be explained via loss of Cr(III) to exported particles, thereby providing a mechanism to account for the nutrient depth profile for Cr in modern seawater. Given the large fractionation of stable Cr isotopes during Cr(VI) reduction, Cr(III) associated with exported organic carbon is likely enriched in lighter isotopes. Most sedimentary Cr isotope studies have thus far neglected internal fractionating processes in the marine Cr cycle, but our data indicate that loss of Cr to exported particles may be traced in the sedimentary d53Cr record.