4 resultados para Personal exposure

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Little is known about the population's exposure to radio frequency electromagnetic fields (RF-EMF) in industrialized countries. OBJECTIVES: To examine levels of exposure and the importance of different RF-EMF sources and settings in a sample of volunteers living in a Swiss city. METHODS: RF-EMF exposure of 166 volunteers from Basel, Switzerland, was measured with personal exposure meters (exposimeters). Participants carried an exposimeter for 1 week (two separate weeks in 32 participants) and completed an activity diary. Mean values were calculated using the robust regression on order statistics (ROS) method. RESULTS: Mean weekly exposure to all RF-EMF sources was 0.13 mW/m(2) (0.22 V/m) (range of individual means 0.014-0.881 mW/m(2)). Exposure was mainly due to mobile phone base stations (32.0%), mobile phone handsets (29.1%) and digital enhanced cordless telecommunications (DECT) phones (22.7%). Persons owning a DECT phone (total mean 0.15 mW/m(2)) or mobile phone (0.14 mW/m(2)) were exposed more than those not owning a DECT or mobile phone (0.10 mW/m(2)). Mean values were highest in trains (1.16 mW/m(2)), airports (0.74 mW/m(2)) and tramways or buses (0.36 mW/m(2)), and higher during daytime (0.16 mW/m(2)) than nighttime (0.08 mW/m(2)). The Spearman correlation coefficient between mean exposure in the first and second week was 0.61. CONCLUSIONS: Exposure to RF-EMF varied considerably between persons and locations but was fairly consistent within persons. Mobile phone handsets, mobile phone base stations and cordless phones were important sources of exposure in urban Switzerland.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exposimeters are increasingly applied in bioelectromagnetic research to determine personal radiofrequency electromagnetic field (RF-EMF) exposure. The main advantages of exposimeter measurements are their convenient handling for study participants and the large amount of personal exposure data, which can be obtained for several RF-EMF sources. However, the large proportion of measurements below the detection limit is a challenge for data analysis. With the robust ROS (regression on order statistics) method, summary statistics can be calculated by fitting an assumed distribution to the observed data. We used a preliminary sample of 109 weekly exposimeter measurements from the QUALIFEX study to compare summary statistics computed by robust ROS with a naïve approach, where values below the detection limit were replaced by the value of the detection limit. For the total RF-EMF exposure, differences between the naïve approach and the robust ROS were moderate for the 90th percentile and the arithmetic mean. However, exposure contributions from minor RF-EMF sources were considerably overestimated with the naïve approach. This results in an underestimation of the exposure range in the population, which may bias the evaluation of potential exposure-response associations. We conclude from our analyses that summary statistics of exposimeter data calculated by robust ROS are more reliable and more informative than estimates based on a naïve approach. Nevertheless, estimates of source-specific medians or even lower percentiles depend on the assumed data distribution and should be considered with caution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Radio frequency electromagnetic fields (RF-EMF) in our daily life are caused by numerous sources such as fixed site transmitters (e.g. mobile phone base stations) or indoor devices (e.g. cordless phones). The objective of this study was to develop a prediction model which can be used to predict mean RF-EMF exposure from different sources for a large study population in epidemiological research. We collected personal RF-EMF exposure measurements of 166 volunteers from Basel, Switzerland, by means of portable exposure meters, which were carried during one week. For a validation study we repeated exposure measurements of 31 study participants 21 weeks after the measurements of the first week on average. These second measurements were not used for the model development. We used two data sources as exposure predictors: 1) a questionnaire on potentially exposure relevant characteristics and behaviors and 2) modeled RF-EMF from fixed site transmitters (mobile phone base stations, broadcast transmitters) at the participants' place of residence using a geospatial propagation model. Relevant exposure predictors, which were identified by means of multiple regression analysis, were the modeled RF-EMF at the participants' home from the propagation model, housing characteristics, ownership of communication devices (wireless LAN, mobile and cordless phones) and behavioral aspects such as amount of time spent in public transports. The proportion of variance explained (R2) by the final model was 0.52. The analysis of the agreement between calculated and measured RF-EMF showed a sensitivity of 0.56 and a specificity of 0.95 (cut-off: 90th percentile). In the validation study, the sensitivity and specificity of the model were 0.67 and 0.96, respectively. We could demonstrate that it is feasible to model personal RF-EMF exposure. Most importantly, our validation study suggests that the model can be used to assess average exposure over several months.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to polycyclic aromatic hydrocarbons (PAH) and DNA damage were analyzed in coke oven (n = 37), refractory (n = 96), graphite electrode (n = 26), and converter workers (n = 12), whereas construction workers (n = 48) served as referents. PAH exposure was assessed by personal air sampling during shift and biological monitoring in urine post shift (1-hydroxypyrene, 1-OHP and 1-, 2 + 9-, 3-, 4-hydroxyphenanthrenes, SigmaOHPHE). DNA damage was measured by 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and DNA strand breaks in blood post shift. Median 1-OHP and SigmaOHPHE were highest in converter workers (13.5 and 37.2 microg/g crea). The industrial setting contributed to the metabolite concentrations rather than the air-borne concentration alone. Other routes of uptake, probably dermal, influenced associations between air-borne concentrations and levels of PAH metabolites in urine making biomonitoring results preferred parameters to assess exposure to PAH. DNA damage in terms of 8-oxo-dGuo and DNA strand breaks was higher in exposed workers compared to referents ranking highest for graphite-electrode production. The type of industry contributed to genotoxic DNA damage and DNA damage was not unequivocally associated to PAH on the individual level most likely due to potential contributions of co-exposures.