4 resultados para Permutations.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Periodontitis is the major cause of tooth loss in adults and is linked to systemic illnesses, such as cardiovascular disease and stroke. The development of rapid point-of-care (POC) chairside diagnostics has the potential for the early detection of periodontal infection and progression to identify incipient disease and reduce health care costs. However, validation of effective diagnostics requires the identification and verification of biomarkers correlated with disease progression. This clinical study sought to determine the ability of putative host- and microbially derived biomarkers to identify periodontal disease status from whole saliva and plaque biofilm. METHODS: One hundred human subjects were equally recruited into a healthy/gingivitis group or a periodontitis population. Whole saliva was collected from all subjects and analyzed using antibody arrays to measure the levels of multiple proinflammatory cytokines and bone resorptive/turnover markers. RESULTS: Salivary biomarker data were correlated to comprehensive clinical, radiographic, and microbial plaque biofilm levels measured by quantitative polymerase chain reaction (qPCR) for the generation of models for periodontal disease identification. Significantly elevated levels of matrix metalloproteinase (MMP)-8 and -9 were found in subjects with advanced periodontitis with Random Forest importance scores of 7.1 and 5.1, respectively. The generation of receiver operating characteristic curves demonstrated that permutations of salivary biomarkers and pathogen biofilm values augmented the prediction of disease category. Multiple combinations of salivary biomarkers (especially MMP-8 and -9 and osteoprotegerin) combined with red-complex anaerobic periodontal pathogens (such as Porphyromonas gingivalis or Treponema denticola) provided highly accurate predictions of periodontal disease category. Elevated salivary MMP-8 and T. denticola biofilm levels displayed robust combinatorial characteristics in predicting periodontal disease severity (area under the curve = 0.88; odds ratio = 24.6; 95% confidence interval: 5.2 to 116.5). CONCLUSIONS: Using qPCR and sensitive immunoassays, we identified host- and bacterially derived biomarkers correlated with periodontal disease. This approach offers significant potential for the discovery of biomarker signatures useful in the development of rapid POC chairside diagnostics for oral and systemic diseases. Studies are ongoing to apply this approach to the longitudinal predictions of disease activity.
Resumo:
Block bootstrap has been introduced in the literature for resampling dependent data, i.e. stationary processes. One of the main assumptions in block bootstrapping is that the blocks of observations are exchangeable, i.e. their joint distribution is immune to permutations. In this paper we propose a new Bayesian approach to block bootstrapping, starting from the construction of exchangeable blocks. Our sampling mechanism is based on a particular class of reinforced urn processes
Resumo:
Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that (a) there should be a canonical function from sequent proofs to proof nets, (b) it should be possible to check the correctness of a net in polynomial time, (c) every correct net should be obtainable from a sequent calculus proof, and (d) there should be a cut-elimination procedure which preserves correctness. Previous attempts to give proof-net-like objects for propositional classical logic have failed at least one of the above conditions. In Richard McKinley (2010) [22], the author presented a calculus of proof nets (expansion nets) satisfying (a) and (b); the paper defined a sequent calculus corresponding to expansion nets but gave no explicit demonstration of (c). That sequent calculus, called LK∗ in this paper, is a novel one-sided sequent calculus with both additively and multiplicatively formulated disjunction rules. In this paper (a self-contained extended version of Richard McKinley (2010) [22]), we give a full proof of (c) for expansion nets with respect to LK∗, and in addition give a cut-elimination procedure internal to expansion nets – this makes expansion nets the first notion of proof-net for classical logic satisfying all four criteria.
Resumo:
We propose notions of calibration for probabilistic forecasts of general multivariate quantities. Probabilistic copula calibration is a natural analogue of probabilistic calibration in the univariate setting. It can be assessed empirically by checking for the uniformity of the copula probability integral transform (CopPIT), which is invariant under coordinate permutations and coordinatewise strictly monotone transformations of the predictive distribution and the outcome. The CopPIT histogram can be interpreted as a generalization and variant of the multivariate rank histogram, which has been used to check the calibration of ensemble forecasts. Climatological copula calibration is an analogue of marginal calibration in the univariate setting. Methods and tools are illustrated in a simulation study and applied to compare raw numerical model and statistically postprocessed ensemble forecasts of bivariate wind vectors.