35 resultados para Periodontal regeneration
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The primary objective of this study was to clinically and histologically evaluate periodontal wound healing/regeneration following surgical implantation of recombinant human growth/differentiation factor-5 (rhGDF-5) adsorbed onto a particulate ?-tricalcium phosphate (?-TCP) carrier rhGDF-5/?-TCP into periodontal defects in man.
Resumo:
BACKGROUND: Despite a large body of clinical and histological data demonstrating beneficial effects of enamel matrix proteins (EMPs) for regenerative periodontal therapy, it is less clear how the available biological data can explain the mechanisms underlying the supportive effects of EMPs. OBJECTIVE: To analyse all available biological data of EMPs at the cellular and molecular levels that are relevant in the context of periodontal wound healing and tissue formation. METHODS: A stringent systematic approach was applied using the key words "enamel matrix proteins" OR "enamel matrix derivative" OR "emdogain" OR "amelogenin". The literature search was performed separately for epithelial cells, gingival fibroblasts, periodontal ligament cells, cementoblasts, osteogenic/chondrogenic/bone marrow cells, wound healing, and bacteria. RESULTS: A total of 103 papers met the inclusion criteria. EMPs affect many different cell types. Overall, the available data show that EMPs have effects on: (1) cell attachment, spreading, and chemotaxis; (2) cell proliferation and survival; (3) expression of transcription factors; (4) expression of growth factors, cytokines, extracellular matrix constituents, and other macromolecules; and (5) expression of molecules involved in the regulation of bone remodelling. CONCLUSION: All together, the data analysis provides strong evidence for EMPs to support wound healing and new periodontal tissue formation.
Resumo:
Guided tissue regeneration (GTR) with bioabsorbable collagen membranes (CM) is commonly used for the treatment of periodontal defects. The objective of this systematic review of randomized clinical trials was to assess the clinical efficacy of GTR procedures with CM, with or without bone substitutes, in periodontal infrabony defects compared with that of open flap debridement (OFD) alone. Primary outcomes were tooth loss and gain in clinical attachment level (CAL). Screening of records, data extraction, and risk-of-bias assessments were performed by two reviewers. Weighted mean differences were estimated by random effects meta-analysis. We included 21 reports on 17 trials. Risk of bias was generally high. No data were available for the primary outcome tooth loss. The summary treatment effect for change in CAL for GTR with CM compared with OFD was 1.58 mm (95% CI, 1.27 to 1.88). Despite large between-trial heterogeneity (I2 = 75%, p < .001), all trials favored GTR over OFD. No differences in treatment effects were detected between trials of GTR with CM alone and trials of GTR with CM in combination with bone substitutes (p for interaction, .31). GTR with CM, with or without substitutes, may result in improved clinical outcomes compared with those achieved with OFD alone. Our findings support GTR with CM for the treatment of infrabony periodontal defects.
Resumo:
OBJECTIVE To systematically analyze the regenerative effect of the available biomaterials either alone or in various combinations for the treatment of periodontal intrabony defects as evaluated in preclinical histologic studies. DATA SOURCES A protocol covered all aspects of the systematic review methodology. A literature search was performed in Medline, including hand searching. Combinations of searching terms and several criteria were applied for study identification, selection, and inclusion. The preliminary outcome variable was periodontal regeneration after reconstructive surgery obtained with the various regenerative materials, as demonstrated through histologic/ histomorphometric analysis. New periodontal ligament, new cementum, and new bone formation as a linear measurement in mm or as a percentage of the instrumented root length were recorded. Data were extracted based on the general characteristics, study characteristics, methodologic characteristics, and conclusions. Study selection was limited to preclinical studies involving histologic analysis, evaluating the use of potential regenerative materials (ie, barrier membranes, grafting materials, or growth factors/proteins) for the treatment of periodontal intrabony defects. Any type of biomaterial alone or in various combinations was considered. All studies reporting histologic outcome measures with a healing period of at least 6 weeks were included. A meta-analysis was not possible due to the heterogeneity of the data. CONCLUSION Flap surgery in conjunction with most of the evaluated biomaterials used either alone or in various combinations has been shown to promote periodontal regeneration to a greater extent than control therapy (flap surgery without biomaterials). Among the used biomaterials, autografts revealed the most favorable outcomes, whereas the use of most biologic factors showed inferior results compared to flap surgery.
Resumo:
BACKGROUND Although regenerative treatment options are available, periodontal regeneration is still regarded as insufficient and unpredictable. AIM This review article provides scientific background information on the animated 3D film Cell-to-Cell Communication - Periodontal Regeneration. RESULTS Periodontal regeneration is understood as a recapitulation of embryonic mechanisms. Therefore, a thorough understanding of cellular and molecular mechanisms regulating normal tooth root development is imperative to improve existing and develop new periodontal regenerative therapies. However, compared to tooth crown and earlier stages of tooth development, much less is known about the development of the tooth root. The formation of root cementum is considered the critical element in periodontal regeneration. Therefore, much research in recent years has focused on the origin and differentiation of cementoblasts. Evidence is accumulating that the Hertwig's epithelial root sheath (HERS) has a pivotal role in root formation and cementogenesis. Traditionally, ectomesenchymal cells in the dental follicle were thought to differentiate into cementoblasts. According to an alternative theory, however, cementoblasts originate from the HERS. What happens when the periodontal attachment system is traumatically compromised? Minor mechanical insults to the periodontium may spontaneously heal, and the tissues can structurally and functionally be restored. But what happens to the periodontium in case of periodontitis, an infectious disease, after periodontal treatment? A non-regenerative treatment of periodontitis normally results in periodontal repair (i.e., the formation of a long junctional epithelium) rather than regeneration. Thus, a regenerative treatment is indicated to restore the original architecture and function of the periodontium. Guided tissue regeneration or enamel matrix proteins are such regenerative therapies, but further improvement is required. As remnants of HERS persist as epithelial cell rests of Malassez in the periodontal ligament, these epithelial cells are regarded as a stem cell niche that can give rise to new cementoblasts. Enamel matrix proteins and members of the transforming growth factor beta (TGF-ß) superfamily have been implicated in cementoblast differentiation. CONCLUSION A better knowledge of cell-to-cell communication leading to cementoblast differentiation may be used to develop improved regenerative therapies to reconstitute periodontal tissues that were lost due to periodontitis.
Resumo:
OBJECTIVE The aim of the present systematic review and meta-analysis was to assess the clinical efficacy of regenerative periodontal surgery of intrabony defects using a combination of enamel matrix derivative (EMD) and bone graft compared with that of EMD alone. MATERIALS AND METHODS The Cochrane Oral Health Group specialist trials, MEDLINE, and EMBASE databases were searched for entries up to February 2014. The primary outcome was gain of clinical attachment (CAL). Weighted means and forest plots were calculated for CAL gain, probing depth (PD), and gingival recession (REC). RESULTS Twelve studies reporting on 434 patients and 548 intrabony defects were selected for the analysis. Mean CAL gain amounted to 3.76 ± 1.07 mm (median 3.63 95 % CI 3.51-3.75) following treatment with a combination of EMD and bone graft and to 3.32 ± 1.04 mm (median 3.40; 95 % CI 3.28-3.52) following treatment with EMD alone. Mean PD reduction measured 4.22 ± 1.20 mm (median 4.10; 95 % CI 3.96-4.24) at sites treated with EMD and bone graft and yielded 4.12 ± 1.07 mm (median 4.00; 95 % CI 3.88-4.12) at sites treated with EMD alone. Mean REC increase amounted to 0.76 ± 0.42 mm (median 0.63; 95 % CI 0.58-0.68) at sites treated with EMD and bone graft and to 0.91 ± 0.26 mm (median 0.90; 95 % CI 0.87-0.93) at sites treated with EMD alone. CONCLUSIONS Within their limits, the present results indicate that the combination of EMD and bone grafts may result in additional clinical improvements in terms of CAL gain and PD reduction compared with those obtained with EMD alone. The potential influence of the chosen graft material or of the surgical procedure (i.e., flap design) on the clinical outcomes is unclear. CLINICAL RELEVANCE The present findings support the use of EMD and bone grafts for the treatment of intrabony periodontal defects.
Resumo:
Intrabony periodontal defects are a frequent complication of periodontitis and, if left untreated, may negatively affect long-term tooth prognosis. The optimal outcome of treatment in intrabony defects is considered to be the absence of bleeding on probing, the presence of shallow pockets associated with periodontal regeneration (i.e. formation of new root cementum with functionally orientated inserting periodontal ligament fibers connected to new alveolar bone) and no soft-tissue recession. A plethora of different surgical techniques, often including implantation of various types of bone graft and/or bone substitutes, root surface demineralization, guided tissue regeneration, growth and differentiation factors, enamel matrix proteins or various combinations thereof, have been employed to achieve periodontal regeneration. Despite positive observations in animal models and successful outcomes reported for many of the available regenerative techniques and materials in patients, including histologic reports, robust information on the degree to which reported clinical improvements reflect true periodontal regeneration does not exist. Thus, the aim of this review was to summarize, in a systematic manner, the available histologic evidence on the effect of reconstructive periodontal surgery using various types of biomaterials to enhance periodontal wound healing/regeneration in human intrabony defects. In addition, the inherent problems associated with performing human histologic studies and in interpreting the results, as well as certain ethical considerations, are discussed. The results of the present systematic review indicate that periodontal regeneration in human intrabony defects can be achieved to a variable extent using a range of methods and materials. Periodontal regeneration has been observed following the use of a variety of bone grafts and substitutes, guided tissue regeneration, biological factors and combinations thereof. Combination approaches appear to provide the best outcomes, whilst implantation of alloplastic material alone demonstrated limited, to no, periodontal regeneration.
Resumo:
BACKGROUND Treatment of furcation defects is a core component of periodontal therapy. The goal of this consensus report is to critically appraise the evidence and to subsequently present interpretive conclusions regarding the effectiveness of regenerative therapy for the treatment of furcation defects and recommendations for future research in this area. METHODS A systematic review was conducted before the consensus meeting. This review aims to evaluate and present the available evidence regarding the effectiveness of different regenerative approaches for the treatment of furcation defects in specific clinical scenarios compared with conventional surgical therapy. During the meeting, the outcomes of the systematic review, as well as other pertinent sources of evidence, were discussed by a committee of nine members. The consensus group members submitted additional material for consideration by the group in advance and at the time of the meeting. The group agreed on a comprehensive summary of the evidence and also formulated recommendations for the treatment of furcation defects via regenerative therapies and the conduction of future studies. RESULTS Histologic proof of periodontal regeneration after the application of a combined regenerative therapy for the treatment of maxillary facial, mesial, distal, and mandibular facial or lingual Class II furcation defects has been demonstrated in several studies. Evidence of histologic periodontal regeneration in mandibular Class III defects is limited to one case report. Favorable outcomes after regenerative therapy for maxillary Class III furcation defects are limited to clinical case reports. In Class I furcation defects, regenerative therapy may be beneficial in certain clinical scenarios, although generally Class I furcation defects may be treated predictably with non-regenerative therapies. There is a paucity of data regarding quantifiable patient-reported outcomes after surgical treatment of furcation defects. CONCLUSIONS Based on the available evidence, it was concluded that regenerative therapy is a viable option to achieve predictable outcomes for the treatment of furcation defects in certain clinical scenarios. Future research should test the efficacy of novel regenerative approaches that have the potential to enhance the effectiveness of therapy in clinical scenarios associated historically with less predictable outcomes. Additionally, future studies should place emphasis on histologic demonstration of periodontal regeneration in humans and also include validated patient-reported outcomes. CLINICAL RECOMMENDATIONS Based on the prevailing evidence, the following clinical recommendations could be offered. 1) Periodontal regeneration has been established as a viable therapeutic option for the treatment of various furcation defects, among which Class II defects represent a highly predictable scenario. Hence, regenerative periodontal therapy should be considered before resective therapy or extraction; 2) The application of a combined therapeutic approach (i.e., barrier, bone replacement graft with or without biologics) appears to offer an advantage over monotherapeutic algorithms; 3) To achieve predictable regenerative outcomes in the treatment of furcation defects, adverse systemic and local factors should be evaluated and controlled when possible; 4) Stringent postoperative care and subsequent supportive periodontal therapy are essential to achieve sustainable long-term regenerative outcomes.
Resumo:
BACKGROUND Despite the worldwide increased prevalence of osteoporosis, no data are available evaluating the effect of an enamel matrix derivative (EMD) on the healing of periodontal defects in patients with osteoporosis. This study aims to evaluate whether the regenerative potential of EMD may be suitable for osteoporosis-related periodontal defects. METHODS Forty female Wistar rats (mean body weight: 200 g) were used for this study. An osteoporosis animal model was carried out by bilateral ovariectomy (OVX) in 20 animals. Ten weeks after OVX, bilateral fenestration defects were created at the buccal aspect of the first mandibular molar. Animals were randomly assigned to four groups of 10 animals per group: 1) control animals with unfilled periodontal defects; 2) control animals with EMD-treated defects; 3) OVX animals with unfilled defects; and 4) OVX animals with EMD-treated defects. The animals were euthanized 28 days later, and the percentage of defect fill and thickness of newly formed bone and cementum were assessed by histomorphometry and microcomputed tomography (micro-CT) analysis. The number of osteoclasts was determined by tartrate-resistant acid phosphatase (TRAP), and angiogenesis was assessed by analyzing formation of blood vessels. RESULTS OVX animals demonstrated significantly reduced bone volume in unfilled defects compared with control defects (18.9% for OVX animals versus 27.2% for control animals) as assessed by micro-CT. The addition of EMD in both OVX and control animals resulted in significantly higher bone density (52.4% and 69.2%, respectively) and bone width (134 versus 165μm) compared with untreated defects; however, the healing in OVX animals treated with EMD was significantly lower than that in control animals treated with EMD. Animals treated with EMD also demonstrated significantly higher cementum formation in both control and OVX animals. The number of TRAP-positive osteoclasts did not vary between untreated and EMD-treated animals; however, a significant increase was observed in all OVX animals. The number of blood vessels and percentage of new vessel formation was significantly higher in EMD-treated samples. CONCLUSIONS The results from the present study suggest that: 1) an osteoporotic phenotype may decrease periodontal regeneration; and 2) EMD may support greater periodontal regeneration in patients suffering from the disease. Additional clinical studies are necessary to fully elucidate the possible beneficial effect of EMD for periodontal regeneration in patients suffering from osteoporosis.
Resumo:
The ultimate goals of periodontal therapy remain the complete regeneration of those periodontal tissues lost to the destructive inflammatory-immune response, or to trauma, with tissues that possess the same structure and function, and the re-establishment of a sustainable health-promoting biofilm from one characterized by dysbiosis. This volume of Periodontology 2000 discusses the multiple facets of a transition from therapeutic empiricism during the late 1960s, toward regenerative therapies, which is founded on a clearer understanding of the biophysiology of normal structure and function. This introductory article provides an overview on the requirements of appropriate in vitro laboratory models (e.g. cell culture), of preclinical (i.e. animal) models and of human studies for periodontal wound and bone repair. Laboratory studies may provide valuable fundamental insights into basic mechanisms involved in wound repair and regeneration but also suffer from a unidimensional and simplistic approach that does not account for the complexities of the in vivo situation, in which multiple cell types and interactions all contribute to definitive outcomes. Therefore, such laboratory studies require validatory research, employing preclinical models specifically designed to demonstrate proof-of-concept efficacy, preliminary safety and adaptation to human disease scenarios. Small animal models provide the most economic and logistically feasible preliminary approaches but the outcomes do not necessarily translate to larger animal or human models. The advantages and limitations of all periodontal-regeneration models need to be carefully considered when planning investigations to ensure that the optimal design is adopted to answer the specific research question posed. Future challenges lie in the areas of stem cell research, scaffold designs, cell delivery and choice of growth factors, along with research to ensure appropriate gingival coverage in order to prevent gingival recession during the healing phase.
Resumo:
A derivative (EMD) of enamel matrix proteins (EMPs) is used for periodontal regeneration because EMPs are believed to induce the formation of acellular extrinsic fiber cementum (AEFC). Other reports, however, indicate that EMPs have osteogenic potential. The aim of this study was to characterize the nature of the tissue that forms on the root surface following application of EMD. Ten human teeth affected by periodontitis and scheduled for extraction were treated with EMD. Four to six weeks later, they were extracted and processed for analysis by light microscopy and transmission electron microscopy. Immunocytochemistry with antibodies against bone sialoprotein (BSP) and osteopontin (OPN) was performed to determine the mineralization pattern. The newly formed tissues on the root were thick and contained embedded cells. Small mineralization foci were regularly seen, and large organic matrix patches were occasionally seen, but a distinct mineralization front was lacking. While labeling for BSP was always associated with small mineralization foci and large matrix patches, OPN labeling was seen inconsistently. It is concluded that tissues resembling either cellular intrinsic fiber cementum or a type of bone were observed. The mineralization pattern mostly resembled that found in bone, except for a few areas that exhibited a hitherto undescribed mineralization pattern.
Resumo:
OBJECTIVES The aim of the study was to clinically and histologically evaluate the healing of human intrabony defects treated with open flap surgery (OFD) and application of a new, resorbable, fully synthetic, unsintered, nanocrystalline, phase-pure hydroxyapatite (nano-HA). MATERIALS AND METHODS Six patients, each of them displaying very advanced intrabony defects around teeth scheduled for extraction due to advanced chronic periodontitis and further prosthodontic considerations, were included in the study. Following local anaesthesia, mucoperiosteal flaps were reflected; the granulation tissue was removed, and the roots were meticulously debrided by hand and ultrasonic instruments. A notch was placed at the most apical extent of the calculus present on the root surface or at the most apical part of the defect (if no calculus was present) in order to serve as a reference for the histological evaluation. Following defect fill with nano-HA, the flaps were sutured by means of mattress sutures to allow primary intention healing. At 7 months after regenerative surgery, the teeth were extracted together with some of their surrounding soft and hard tissues and processed for histological analysis. RESULTS The postoperative healing was uneventful in all cases. At 7 months following surgery, mean PPD reduction and mean CAL gain measured 4.0 ± 0.8 and 2.5 ± 0.8 mm, respectively. The histological analysis revealed a healing predominantly characterized by epithelial downgrowth. Limited formation of new cementum with inserting connective tissue fibers and bone regeneration occurred in three out of the six biopsies (i.e. 0-0.86 and 0-1.33 mm, respectively). Complete resorption of the nano-HA was found in four out of the six biopsies. A few remnants of the graft particles (either surrounded by newly formed mineralized tissue or encapsulated in connective tissue) were found in two out of the six biopsies. CONCLUSION Within their limits, the present results indicate that nano-HA has limited potential to promote periodontal regeneration in human intrabony defects. CLINICAL RELEVANCE The clinical outcomes obtained following surgery with OFD + nano-HA may not reflect true periodontal regeneration.
Resumo:
OBJECTIVE Catecholamines released from β-adrenergic neurons upon stress can interfere with periodontal regeneration. The cellular mechanisms, however, are unclear. Here, we assessed the effect of catecholamines on proliferation of periodontal fibroblasts. METHODS Fibroblasts from the gingiva and the periodontal ligament were exposed to agonists of the β-adrenergic receptors; isoproterenol (ISO, non-selective β-adrenergic agonist), salbutamol (SAL, selective β2-adrenergic receptor agonist) and BRL 37344 (BRL selective β3-receptor agonist). Proliferation was stimulated with platelet-derived growth factor-BB (PDGF-BB). Pharmacological inhibitors and gene expression analysis further revealed β-adrenergic signalling. RESULTS Gingiva and periodontal ligament fibroblast express the β2-adrenergic receptor. ISO and SAL but not BRL decreased proliferation of fibroblasts in the presence of PDGF-BB. The inhibitory effect of β-adrenergic signalling on proliferation but not protein synthesis in response to PDGF-BB was reduced by propranolol, a non-selective β-adrenergic antagonist. CONCLUSIONS These results suggest that β2-receptor agonists can reduce the mitogenic response of periodontal fibroblasts. These data add to the compelling concept that blocking of β2-receptor signalling can support tissue maintenance and regeneration.
Resumo:
AIMS The objective of this study is to evaluate the effects of a paste-like bone substitute material with easy handling properties and improved mechanical stability on periodontal regeneration of intrabony defects in dogs. MATERIALS AND METHODS Mandibular and maxillary first and third premolars were extracted, and three-wall intrabony defects were created on second and fourth premolars. After a healing period of 3 months, acute type defects were filled with a paste-like formulation of deproteinized bovine bone mineral (DBBM) (particle size, 0.125-0.25 mm) in a collagenous carrier matrix (T1), pulverized DBBM (particle size, 0.125-0.25 mm) without the carrier (T2), or Bio-Oss® granules (particle size, 0.25-1.00 mm) as control (C). All defects were covered with a Bio-Gide® membrane. The dogs were sacrificed after 12 weeks, and the specimens were analyzed histologically and histometrically. RESULTS Postoperative healing of all defects was uneventful, and no histological signs of inflammation were observed in the augmented and gingival regions. New cementum, new periodontal ligament, and new bone were observed in all three groups. The mean vertical bone gain was 3.26 mm (T1), 3.60 mm (T2), and 3.81 mm (C). That of new cementum was 2.25 mm (T1), 3.88 mm (T2), and 3.53 mm (C). The differences did not reach statistical significance. The DBBM particles were both incorporated in new bone and embedded in immature bone marrow. CONCLUSIONS The results of this preclinical study showed that the 0.125-0.25-mm DBBM particles in a powder or paste formulation resulted in periodontal regeneration comparable to the commercially available DBBM. Osteoconductivity, in particular, was not affected by DBBM size or paste formulation. CLINICAL RELEVANCE The improved handling properties of the paste-like bone substitute consisting of small DBBM particles embedded in a collagen-based carrier hold promise for clinical applications.
Resumo:
OBJECTIVES Recent studies suggest that a combination of enamel matrix derivative (EMD) with grafting material may improve periodontal wound healing/regeneration. Newly developed calcium phosphate (CaP) ceramics have been demonstrated a viable synthetic replacement option for bone grafting filler materials. AIMS This study aims to test the ability for EMD to adsorb to the surface of CaP particles and to determine the effect of EMD on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. MATERIALS AND METHODS EMD was adsorbed onto CaP particles and analyzed for protein adsorption patterns via scanning electron microscopy and high-resolution immunocytochemistry with an anti-EMD antibody. Cell attachment and cell proliferation were quantified using CellTiter 96 One Solution Cell Assay (MTS). Cell differentiation was analyzed using real-time PCR for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen1α1, and mineralization was assessed using alizarin red staining. RESULTS Analysis of cell attachment revealed significantly higher number of cells attached to EMD-adsorbed CaP particles when compared to control and blood-adsorbed samples. EMD also significantly increased cell proliferation at 3 and 5 days post-seeding. Moreover, there were significantly higher mRNA levels of osteoblast differentiation markers including collagen1α1, alkaline phosphatase, and osteocalcin in osteoblasts and PDL cells cultured on EMD-adsorbed CaP particles at various time points. CONCLUSION The present study suggests that the addition of EMD to CaP grafting particles may influence periodontal regeneration by stimulating PDL cell and osteoblast attachment, proliferation, and differentiation. Future in vivo and clinical studies are required to confirm these findings. CLINICAL RELEVANCE The combination of EMD and CaP may represent an option for regenerative periodontal therapy in advanced intrabony defects.