52 resultados para Periodic Boundary Conditions
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We study the effects of a finite cubic volume with twisted boundary conditions on pseudoscalar mesons. We apply Chiral Perturbation Theory in the p-regime and introduce the twist by means of a constant vector field. The corrections of masses, decay constants, pseudoscalar coupling constants and form factors are calculated at next-to-leading order. We detail the derivations and compare with results available in the literature. In some case there is disagreement due to a different treatment of new extra terms generated from the breaking of the cubic invariance. We advocate to treat such terms as renormalization terms of the twisting angles and reabsorb them in the on-shell conditions. We confirm that the corrections of masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. Furthermore, we show that the matrix elements of the scalar (resp. vector) form factor satisfies the Feynman–Hellman Theorem (resp. the Ward–Takahashi identity). To show the Ward–Takahashi identity we construct an effective field theory for charged pions which is invariant under electromagnetic gauge transformations and which reproduces the results obtained with Chiral Perturbation Theory at a vanishing momentum transfer. This generalizes considerations previously published for periodic boundary conditions to twisted boundary conditions. Another method to estimate the corrections in finite volume are asymptotic formulae. Asymptotic formulae were introduced by Lüscher and relate the corrections of a given physical quantity to an integral of a specific amplitude, evaluated in infinite volume. Here, we revise the original derivation of Lüscher and generalize it to finite volume with twisted boundary conditions. In some cases, the derivation involves complications due to extra terms generated from the breaking of the cubic invariance. We isolate such terms and treat them as renormalization terms just as done before. In that way, we derive asymptotic formulae for masses, decay constants, pseudoscalar coupling constants and scalar form factors. At the same time, we derive also asymptotic formulae for renormalization terms. We apply all these formulae in combination with Chiral Perturbation Theory and estimate the corrections beyond next-to-leading order. We show that asymptotic formulae for masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. A similar relation connects in an independent way asymptotic formulae for renormalization terms. We check these relations for charged pions through a direct calculation. To conclude, a numerical analysis quantifies the importance of finite volume corrections at next-to-leading order and beyond. We perform a generic Analysis and illustrate two possible applications to real simulations.
Resumo:
Using a highly resolved atmospheric general circulation model, the impact of different glacial boundary conditions on precipitation and atmospheric dynamics in the North Atlantic region is investigated. Six 30-yr time slice experiments of the Last Glacial Maximum at 21 thousand years before the present (ka BP) and of a less pronounced glacial state – the Middle Weichselian (65 ka BP) – are compared to analyse the sensitivity to changes in the ice sheet distribution, in the radiative forcing and in the prescribed time-varying sea surface temperature and sea ice, which are taken from a lower-resolved, but fully coupled atmosphere-ocean general circulation model. The strongest differences are found for simulations with different heights of the Laurentide ice sheet. A high surface elevation of the Laurentide ice sheet leads to a southward displacement of the jet stream and the storm track in the North Atlantic region. These changes in the atmospheric dynamics generate a band of increased precipitation in the mid-latitudes across the Atlantic to southern Europe in winter, while the precipitation pattern in summer is only marginally affected. The impact of the radiative forcing differences between the two glacial periods and of the prescribed time-varying sea surface temperatures and sea ice are of second order importance compared to the one of the Laurentide ice sheet. They affect the atmospheric dynamics and precipitation in a similar but less pronounced manner compared with the topographic changes.
Resumo:
In many field or laboratory situations, well-mixed reservoirs like, for instance, injection or detection wells and gas distribution or sampling chambers define boundaries of transport domains. Exchange of solutes or gases across such boundaries can occur through advective or diffusive processes. First we analyzed situations, where the inlet region consists of a well-mixed reservoir, in a systematic way by interpreting them in terms of injection type. Second, we discussed the mass balance errors that seem to appear in case of resident injections. Mixing cells (MC) can be coupled mathematically in different ways to a domain where advective-dispersive transport occurs: by assuming a continuous solute flux at the interface (flux injection, MC-FI), or by assuming a continuous resident concentration (resident injection). In the latter case, the flux leaving the mixing cell can be defined in two ways: either as the value when the interface is approached from the mixing-cell side (MC-RT -), or as the value when it is approached from the column side (MC-RT +). Solutions of these injection types with constant or-in one case-distance-dependent transport parameters were compared to each other as well as to a solution of a two-layer system, where the first layer was characterized by a large dispersion coefficient. These solutions differ mainly at small Peclet numbers. For most real situations, the model for resident injection MC-RI + is considered to be relevant. This type of injection was modeled with a constant or with an exponentially varying dispersion coefficient within the porous medium. A constant dispersion coefficient will be appropriate for gases because of the Eulerian nature of the usually dominating gaseous diffusion coefficient, whereas the asymptotically growing dispersion coefficient will be more appropriate for solutes due to the Lagrangian nature of mechanical dispersion, which evolves only with the fluid flow. Assuming a continuous resident concentration at the interface between a mixing cell and a column, as in case of the MC-RI + model, entails a flux discontinuity. This flux discontinuity arises inherently from the definition of a mixing cell: the mixing process is included in the balance equation, but does not appear in the description of the flux through the mixing cell. There, only convection appears because of the homogeneous concentration within the mixing cell. Thus, the solute flux through a mixing cell in close contact with a transport domain is generally underestimated. This leads to (apparent) mass balance errors, which are often reported for similar situations and erroneously used to judge the validity of such models. Finally, the mixing cell model MC-RI + defines a universal basis regarding the type of solute injection at a boundary. Depending on the mixing cell parameters, it represents, in its limits, flux as well as resident injections. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We study the spectral properties of the two-dimensional Dirac operator on bounded domains together with the appropriate boundary conditions which provide a (continuous) model for graphene nanoribbons. These are of two types, namely, the so-called armchair and zigzag boundary conditions, depending on the line along which the material was cut. In the former case, we show that the spectrum behaves in what might be called a classical way; while in the latter, we prove the existence of a sequence of finite multiplicity eigenvalues converging to zero and which correspond to edge states.
Resumo:
We consider one-dimensional Schrödinger-type operators in a bounded interval with non-self-adjoint Robin-type boundary conditions. It is well known that such operators are generically conjugate to normal operators via a similarity transformation. Motivated by recent interests in quasi-Hermitian Hamiltonians in quantum mechanics, we study properties of the transformations and similar operators in detail. In the case of parity and time reversal boundary conditions, we establish closed integral-type formulae for the similarity transformations, derive a non-local self-adjoint operator similar to the Schrödinger operator and also find the associated “charge conjugation” operator, which plays the role of fundamental symmetry in a Krein-space reformulation of the problem.
Resumo:
Mechanical properties of human trabecular bone play an important role in age-related bone fragility and implant stability. Micro-finite element (microFE) analysis allows computing the apparent elastic properties of trabecular bone biopsies, but the results depend on the type of applied boundary conditions (BCs). In this study, 167 femoral trabecular cubic biopsies with a side length of 5.3 mm were analyzed using microFE analysis to compare their stiffness systematically with kinematic uniform boundary conditions (KUBCs) and periodicity-compatible mixed uniform boundary conditions (PMUBCs). The obtained elastic constants were then used in the volume fraction and fabric-based orthotropic Zysset-Curnier model to identify their respective model parameters. As expected, PMUBCs lead to more compliant apparent elastic properties than KUBCs, especially in shear. The differences in stiffness decreased with bone volume fraction and mean intercept length. Unlike KUBCs, PMUBCs were sensitive to heterogeneity of the biopsies. The Zysset-Curnier model predicted apparent elastic constants successfully in both cases with adjusted coefficients of determination of 0.986 for KUBCs and 0.975 for PMUBCs. The role of these boundary conditions in finite element analyses of whole bones and bone-implant systems will need to be investigated in future work.
Resumo:
Trabecular bone plays an important mechanical role in bone fractures and implant stability. Homogenized nonlinear finite element (FE) analysis of whole bones can deliver improved fracture risk and implant loosening assessment. Such simulations require the knowledge of mechanical properties such as an appropriate yield behavior and criterion for trabecular bone. Identification of a complete yield surface is extremely difficult experimentally but can be achieved in silico by using micro-FE analysis on cubical trabecular volume elements. Nevertheless, the influence of the boundary conditions (BCs), which are applied to such volume elements, on the obtained yield properties remains unknown. Therefore, this study compared homogenized yield properties along 17 load cases of 126 human femoral trabecular cubic specimens computed with classical kinematic uniform BCs (KUBCs) and a new set of mixed uniform BCs, namely periodicity-compatible mixed uniform BCs (PMUBCs). In stress space, PMUBCs lead to 7–72 % lower yield stresses compared to KUBCs. The yield surfaces obtained with both KUBCs and PMUBCs demonstrate a pressure-sensitive ellipsoidal shape. A volume fraction and fabric-based quadric yield function successfully fitted the yield surfaces of both BCs with a correlation coefficient R2≥0.93. As expected, yield strains show only a weak dependency on bone volume fraction and fabric. The role of the two BCs in homogenized FE analysis of whole bones will need to be investigated and validated with experimental results at the whole bone level in future studies.
Resumo:
This study examines how different microphysical parameterization schemes influence orographically induced precipitation and the distributions of hydrometeors and water vapour for midlatitude summer conditions in the Weather Research and Forecasting (WRF) model. A high-resolution two-dimensional idealized simulation is used to assess the differences between the schemes in which a moist air flow is interacting with a bell-shaped 2 km high mountain. Periodic lateral boundary conditions are chosen to recirculate atmospheric water in the domain. It is found that the 13 selected microphysical schemes conserve the water in the model domain. The gain or loss of water is less than 0.81% over a simulation time interval of 61 days. The differences of the microphysical schemes in terms of the distributions of water vapour, hydrometeors and accumulated precipitation are presented and discussed. The Kessler scheme, the only scheme without ice-phase processes, shows final values of cloud liquid water 14 times greater than the other schemes. The differences among the other schemes are not as extreme, but still they differ up to 79% in water vapour, up to 10 times in hydrometeors and up to 64% in accumulated precipitation at the end of the simulation. The microphysical schemes also differ in the surface evaporation rate. The WRF single-moment 3-class scheme has the highest surface evaporation rate compensated by the highest precipitation rate. The different distributions of hydrometeors and water vapour of the microphysical schemes induce differences up to 49 W m−2 in the downwelling shortwave radiation and up to 33 W m−2 in the downwelling longwave radiation.
Resumo:
Fermion boundary conditions play a relevant role in revealing the confinement mechanism of N=1 supersymmetric Yang-Mills theory with one compactified space-time dimension. A deconfinement phase transition occurs for a sufficiently small compactification radius, equivalent to a high temperature in the thermal theory where antiperiodic fermion boundary conditions are applied. Periodic fermion boundary conditions, on the other hand, are related to the Witten index and confinement is expected to persist independently of the length of the compactified dimension. We study this aspect with lattice Monte Carlo simulations for different values of the fermion mass parameter that breaks supersymmetry softly. We find a deconfined region that shrinks when the fermion mass is lowered. Deconfinement takes place between two confined regions at large and small compactification radii, that would correspond to low and high temperatures in the thermal theory. At the smallest fermion masses we find no indication of a deconfinement transition. These results are a first signal for the predicted continuity in the compactification of supersymmetric Yang-Mills theory.
Resumo:
The aim of analogue model experiments in geology is to simulate structures in nature under specific imposed boundary conditions using materials whose rheological properties are similar to those of rocks in nature. In the late 1980s, X-ray computed tomography (CT) was first applied to the analysis of such models. In early studies only a limited number of cross-sectional slices could be recorded because of the time involved in CT data acquisition, the long cooling periods for the X-ray source and computational capacity. Technological improvements presently allow an almost unlimited number of closely spaced serial cross-sections to be acquired and calculated. Computer visualization software allows a full 3D analysis of every recorded stage. Such analyses are especially valuable when trying to understand complex geological structures, commonly with lateral changes in 3D geometry. Periodic acquisition of volumetric data sets in the course of the experiment makes it possible to carry out a 4D analysis of the model, i.e. 3D analysis through time. Examples are shown of 4D analysis of analogue models that tested the influence of lateral rheological changes on the structures obtained in contractional and extensional settings.
Resumo:
Sinotubular junction dilation is one of the most frequent pathologies associated with aortic root incompetence. Hence, we create a finite element model considering the whole root geometry; then, starting from healthy valve models and referring to measures of pathological valves reported in the literature, we reproduce the pathology of the aortic root by imposing appropriate boundary conditions. After evaluating the virtual pathological process, we are able to correlate dimensions of non-functional valves with dimensions of competent valves. Such a relation could be helpful in recreating a competent aortic root and, in particular, it could provide useful information in advance in aortic valve sparing surgery.
Resumo:
Argillaceous formations generally act as aquitards because of their low hydraulic conductivities. This property, together with the large retention capacity of clays for cationic contaminants, has brought argillaceous formations into focus as potential host rocks for the geological disposal of radioactive and other waste. In several countries, programmes are under way to characterise the detailed transport properties of such formations at depth. In this context, the interpretation of profiles of natural tracers in pore waters across the formations can give valuable information about the large-scale and long-term transport behaviour of these formations. Here, tracer-profile data, obtained by various methods of pore-water extraction for nine sites in central Europe, are compiled. Data at each site comprise some or all of the conservative tracers: anions (Cl(-), Br(-)), water isotopes (delta(18)O, delta(2)H) and noble gases (mainly He). Based on a careful evaluation of the palaeo-hydrogeological evolution at each site, model scenarios are derived for initial and boundary pore-water compositions and an attempt is made to numerically reproduce the observed tracer distributions in a consistent way for all tracers and sites, using transport parameters derived from laboratory or in situ tests. The comprehensive results from this project have been reported in Mazurek et al. (2009). Here the results for three sites are presented in detail, but the conclusions are based on model interpretations of the entire data set. In essentially all cases, the shapes of the profiles can be explained by diffusion acting as the dominant transport process over periods of several thousands to several millions of years and at the length scales of the profiles. Transport by advection has a negligible influence on the observed profiles at most sites, as can be shown by estimating the maximum advection velocities that still give acceptable fits of the model with the data. The advantages and disadvantages of different conservative tracers are also assessed. The anion Cl(-) is well suited as a natural tracer in aquitards, because its concentration varies considerably in environmental waters. It can easily be measured, although the uncertainty regarding the fraction of the pore space that is accessible to anions in clays remains an issue. The stable water isotopes are also well suited, but they are more difficult to measure and their values generally exhibit a smaller relative range of variation. Chlorine isotopes (delta(37)Cl) and He are more difficult to interpret because initial and boundary conditions cannot easily be constrained by independent evidence. It is also shown that the existence of perturbing events such as the activation of aquifers due to uplift and erosion, leading to relatively sharp changes of boundary conditions, can be considered as a pre-requisite to obtain well-interpretable tracer signatures. On the other hand, gradual changes of boundary conditions are more difficult to parameterise and so may preclude a clear interpretation.
Resumo:
A main field in biomedical optics research is diffuse optical tomography, where intensity variations of the transmitted light traversing through tissue are detected. Mathematical models and reconstruction algorithms based on finite element methods and Monte Carlo simulations describe the light transport inside the tissue and determine differences in absorption and scattering coefficients. Precise knowledge of the sample's surface shape and orientation is required to provide boundary conditions for these techniques. We propose an integrated method based on structured light three-dimensional (3-D) scanning that provides detailed surface information of the object, which is usable for volume mesh creation and allows the normalization of the intensity dispersion between surface and camera. The experimental setup is complemented by polarization difference imaging to avoid overlaying byproducts caused by inter-reflections and multiple scattering in semitransparent tissue.