5 resultados para Perfused Crocodile Heart
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Introduction: Small animal models are widely used in basic research. However, experimental systems requiring extracorporeal circuits are frequently confronted with limitations related to equipment size. This is particularly true for oxygenators in systems with limited volumes. Thus we aimed to develop and validate an ultra mini-oxygenator for low-volume, buffer-perfused systems. Methods: We have manufactured a series of ultra mini-oxygenators with approximately 175 aligned, microporous, polypropylene hollow fibers contained inside a shell, which is sealed at each of the two extremities to isolate perfusate and gas compartments. With this construction, gas passes through hollow fibers, while perfusate circulates around fibers. Performance of ultra mini-oxygenators (oxygen partial pressure (PO2 ), gas and perfusate flow, perfusate pressure and temperature drop) were assessed with modified Krebs-Henseleit buffer in an in vitro perfusion circuit and an ex vivo rat heart preparation. Results: Mean priming volume of ultra mini-oxygenators was 1.2±0.5 mL and, on average, 86±6% of fibers were open (n=17). In vitro, effective oxygenation (PO2=400-500 mmHg) was achieved for all flow rates up to 50 mL/min and remained stable for at least 2 hours (n=5). Oxygenation was also effective and stable (PO2=456±40 mmHg) in the isolated heart preparation for at least 60 minutes ("venous" PO2=151±11 mmHg; n=5). Conclusions: We have established a reproducible procedure for fabrication of ultra mini-oxygenators, which provide reliable and stable oxygenation for at least 60-120 min. These oxygenators are especially attractive for pre-clinical protocols using small, rather than large, animals.
Resumo:
Vascular endothelial growth factor (VEGF) can induce normal angiogenesis or the growth of angioma-like vascular tumors depending on the amount secreted by each producing cell because it remains localized in the microenvironment. In order to control the distribution of VEGF expression levels in vivo, we recently developed a high-throughput fluorescence-activated cell sorting (FACS)-based technique to rapidly purify transduced progenitors that homogeneously express a specific VEGF dose from a heterogeneous primary population. Here we tested the hypothesis that cell-based delivery of a controlled VEGF level could induce normal angiogenesis in the heart, while preventing the development of angiomas. Freshly isolated human adipose tissue-derived stem cells (ASC) were transduced with retroviral vectors expressing either rat VEGF linked to a FACS-quantifiable cell-surface marker (a truncated form of CD8) or CD8 alone as control (CTR). VEGF-expressing cells were FACS-purified to generate populations producing either a specific VEGF level (SPEC) or uncontrolled heterogeneous levels (ALL). Fifteen nude rats underwent intramyocardial injection of 10(7) cells. Histology was performed after 4 weeks. Both the SPEC and ALL cells produced a similar total amount of VEGF, and both cell types induced a 50%-60% increase in both total and perfused vessel density compared to CTR cells, despite very limited stable engraftment. However, homogeneous VEGF expression by SPEC cells induced only normal and stable angiogenesis. Conversely, heterogeneous expression of a similar total amount by the ALL cells caused the growth of numerous angioma-like structures. These results suggest that controlled VEGF delivery by FACS-purified ASC may be a promising strategy to achieve safe therapeutic angiogenesis in the heart.
Resumo:
Aims Cardiac grafts from non-heartbeating donors (NHBDs) could significantly increase organ availability and reduce waiting-list mortality. Reluctance to exploit hearts from NHBDs arises from obligatory delays in procurement leading to periods of warm ischemia and possible subsequent contractile dysfunction. Means for early prediction of graft suitability prior to transplantation are thus required for development of heart transplantation programs with NHBDs. Methods and Results Hearts (n = 31) isolated from male Wistar rats were perfused with modified Krebs-Henseleit buffer aerobically for 20 min, followed by global, no-flow ischemia (32°C) for 30, 50, 55 or 60 min. Reperfusion was unloaded for 20 min, and then loaded, in working-mode, for 40 min. Left ventricular (LV) pressure was monitored using a micro-tip pressure catheter introduced via the mitral valve. Several hemodynamic parameters measured during early, unloaded reperfusion correlated significantly with LV work after 60 min reperfusion (p<0.001). Coronary flow and the production of lactate and lactate dehydrogenase (LDH) also correlated significantly with outcomes after 60 min reperfusion (p<0.05). Based on early reperfusion hemodynamic measures, a composite, weighted predictive parameter, incorporating heart rate (HR), developed pressure (DP) and end-diastolic pressure, was generated and evaluated against the HR-DP product after 60 min of reperfusion. Effective discriminating ability for this novel parameter was observed for four HR*DP cut-off values, particularly for ≥20 *103 mmHg*beats*min−1 (p<0.01). Conclusion Upon reperfusion of a NHBD heart, early evaluation, at the time of organ procurement, of cardiac hemodynamic parameters, as well as easily accessible markers of metabolism and necrosis seem to accurately predict subsequent contractile recovery and could thus potentially be of use in guiding the decision of accepting the ischemic heart for transplantation.
Resumo:
OBJECTIVE: The purpose of this study was to adapt and improve a minimally invasive two-step postmortem angiographic technique for use on human cadavers. Detailed mapping of the entire vascular system is almost impossible with conventional autopsy tools. The technique described should be valuable in the diagnosis of vascular abnormalities. MATERIALS AND METHODS: Postmortem perfusion with an oily liquid is established with a circulation machine. An oily contrast agent is introduced as a bolus injection, and radiographic imaging is performed. In this pilot study, the upper or lower extremities of four human cadavers were perfused. In two cases, the vascular system of a lower extremity was visualized with anterograde perfusion of the arteries. In the other two cases, in which the suspected cause of death was drug intoxication, the veins of an upper extremity were visualized with retrograde perfusion of the venous system. RESULTS: In each case, the vascular system was visualized up to the level of the small supplying and draining vessels. In three of the four cases, vascular abnormalities were found. In one instance, a venous injection mark engendered by the self-administration of drugs was rendered visible by exudation of the contrast agent. In the other two cases, occlusion of the arteries and veins was apparent. CONCLUSION: The method described is readily applicable to human cadavers. After establishment of postmortem perfusion with paraffin oil and injection of the oily contrast agent, the vascular system can be investigated in detail and vascular abnormalities rendered visible.
Resumo:
OBJECTIVE: Euro-Collins solution (EC) is routinely used in lung transplantation. The high potassium of EC, however, may damage the vascular endothelium, thereby contributing to postischemic reperfusion injury. To assess the influence of the potassium concentration on lung preservation, we evaluated the effect of a "low potassium Euro-Collins solution" (LPEC), in which the sodium and potassium concentrations were reversed. METHODS: In an extracorporeal rat heart-lung model lungs were preserved with EC and LPEC. The heart-lung blocks (HLB) were perfused with Krebs-Henseleit solution containing washed bovine red blood cells and ventilated with room air. The lungs were perfused via the working right ventricle with deoxygenated perfusate. Oxygenation and pulmonary vascular resistance (PVR) were monitored. After baseline measurements, hearts were arrested with St. Thomas' solution and the lungs were perfused with EC or LPEC, or were not perfused (controls). The HLBs were stored for 5 min or 2 h ischemic time at 4 degrees C. Reperfusion and ventilation was performed for 40 min. At the end of the trial the wet/dry ratio of the lungs was calculated and light microscopic assessment of the degree of edema was performed. RESULTS: After 5 min of ischemia oxygenation was significantly better in both preserved groups compared to the controls. Pulmonary vascular resistance was elevated in all three groups after 30 min reperfusion at both ischemic times. After 2 h of ischemia PVR of the group preserved with LPEC was significantly lower than those of the EC and controls (LPEC-5 min: 184 +/- 65 dynes * sec * cm-5, EC-5 min: 275 +/- 119 dynes * sec * cm * cm-5, LPEC-2 h: 324 +/- 47 dynes * sec * m-5, EC-2 h: 507 +/- 83 dynes * sec * cm-5). Oxygenation after 2 h of ischemia and 30 min reperfusion was significantly better in the LPEC group compared to EC and controls (LPEC: 70 +/- 17 mmHg, EC: 44 +/- 3 mmHg). The wet/dry ratio was significantly lower in the two preserved groups compared to controls (LPEC-5 min: 5.7 +/- 0.7, EC-5 min: 5.8 +/- 1.2, controls-5 min: 7.5 +/- 1.8, LPEC-2 h: 6.7 +/- 0.4, EC: 6.9 +/- 0.4, controls-2 h: 7.3 +/- 0.4). CONCLUSIONS: We thus conclude that LPEC results in better oxygenation and lower PVR in this lung preservation model. A low potassium concentration in lung preservation solutions may help in reducing the incidence of early graft dysfunction following lung transplantation.