3 resultados para Percoll
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Intestinal intraepithelial lymphocytes (IEL) are specialized subsets of T cells with distinct functional capacities. While some IEL subsets are circulating, others such as CD8alphaalpha TCRalphabeta IEL are believed to represent non-circulating resident T cell subsets [Sim, G.K., Intraepithelial lymphocytes and the immune system. Adv. Immunol., 1995. 58: 297-343.]. Current methods to obtain enriched preparations of intraepithelial lymphocytes are mostly based on Percoll density gradient or magnetic bead-based technologies [Lundqvist, C., et al., Isolation of functionally active intraepithelial lymphocytes and enterocytes from human small and large intestine. J. Immunol. Methods, 1992. 152(2): 253-263.]. However, these techniques are hampered by a generally low yield of isolated cells, and potential artifacts due to the interference of the isolation procedure with subsequent functional assays, in particular, when antibodies against cell surface markers are required. Here we describe a new method for obtaining relatively pure populations of intestinal IEL (55-75%) at a high yield (>85%) by elutriation centrifugation. This technique is equally suited for the isolation and enrichment of intraepithelial lymphocytes of both mouse and human origin. Time requirements for fractionating cell suspensions by elutriation centrifugation are comparable to Percoll-, or MACS-based isolation procedures. Hence, the substantially higher yield and the consistent robust enrichment for intraepithelial lymphocytes, together with the gentle treatment of the cells during elutriation that does not interfere with subsequent functional assays, are important aspects that are in favor of using this elegant technology to obtain unmanipulated, unbiased populations of intestinal intraepithelial lymphocytes, and, if desired, also of pure epithelial cells.
Resumo:
In this protocol we provide a method to isolate dendritic cells (DC) and epithelial cells (TEC) from the human thymus. DC and TEC are the major antigen presenting cell (APC) types found in a normal thymus and it is well established that they play distinct roles during thymic selection. These cells are localized in distinct microenvironments in the thymus and each APC type makes up only a minor population of cells. To further understand the biology of these cell types, characterization of these cell populations is highly desirable but due to their low frequency, isolation of any of these cell types requires an efficient and reproducible procedure. This protocol details a method to obtain cells suitable for characterization of diverse cellular properties. Thymic tissue is mechanically disrupted and after different steps of enzymatic digestion, the resulting cell suspension is enriched using a Percoll density centrifugation step. For isolation of myeloid DC (CD11c(+)), cells from the low-density fraction (LDF) are immunoselected by magnetic cell sorting. Enrichment of TEC populations (mTEC, cTEC) is achieved by depletion of hematopoietic (CD45(hi)) cells from the low-density Percoll cell fraction allowing their subsequent isolation via fluorescence activated cell sorting (FACS) using specific cell markers. The isolated cells can be used for different downstream applications.
Resumo:
MATERNO-FETAL NUTRIENT TRANSFER ACROSS PRIMARY HUMAN TROPHOBLAST MONOLAYER Objectives: Polarized trophoblasts represent the transport and metabolic barrier between the maternal and fetal circulation. Currently human placental nutrient transfer in vitro is mainly investigated unidirectionallyon cultured primary trophoblasts, or bidirectionally on the Transwell® system using BeWo cells treated with forskolin. As forskolin can induce various gene alterations (e.g. cAMP response element genes), we aimed to establish a physiological primary trophoblast model for materno-fetal nutrient exchange studies without forskolin application. Methods: Human term cytotrophoblasts were isolated by enzymatic digestion and Percoll® gradient separation. The purity of the primary cells was assessed by flow cytometry using the trophoblast-specific marker cytokeratin-7. After screening different coating matrices, we optimized the growth conditions for the primary cytotrophoblasts on Transwell/ inserts. The morphology of 5 days cultured trophoblasts was determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Membrane makers were visualized using confocal microscopy. Additionally transport studies were performed on the polarized trophoblasts in the Transwell® system. Results: During 5 days culture, the trophoblasts (>90% purity) developed a modest trans-epithelial electrical resistance (TEER) and a sizedependent apparent permeability coefficient (Papp) to fluorescently labeled compounds (MW ~400-70’000D). SEM analyses confirmed a confluent trophoblast layer with numerous microvilli at day six, and TEM revealed a monolayer with tight junctions. Immunocytochemistry on the confluent trophoblasts showed positivity for the cell-cell adhesion molecule E-cadherin, the tight junction protein ZO-1, and the membrane proteins ABCA1 and Na+/K+-ATPase. Vectorial glucose and cholesterol transport studies confirmed functionality of the cultured trophoblast barrier. Conclusion: Evidence from cell morphology, biophysical parameters and cell marker expressions indicate the successful and reproducible establishment of a primary trophoblast monolayer model suitable for transport studies. Application of this model to pathological trophoblasts will help to better understand the mechanism underlying gestational diseases, and to define the consequences of placental pathology on materno-fetal nutrient transport.