4 resultados para Peptide bonds

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of Gly-neurotensin(8-13) analogues modified at the N-terminus by acyclic tetraamines (Demotensin 1-4) were obtained by solid-phase peptide synthesis techniques. Strategic replacement of amino acids and/or reduction of sensitive peptide bonds were performed to enhance conjugate resistance against proteolytic enzymes. During 99mTc-labeling, single species radiopeptides, [99mTc]Demotensin 1-4, were easily obtained in high yields and typical specific activities of 1 Ci/micromol. Peptide conjugates displayed a high affinity binding to the human neurotensin subtype 1 receptor (NTS1-R) expressed in colon adenocarcinoma HT-29 or WiDr cells and/or in human tumor sections. [99mTc]Demotensin 1-4 internalized very rapidly in HT-29 or WiDr cells by a NTS1-R-mediated process. [99mTc]Demotensin 3 and 4, which remained stable during 1 h incubation in murine plasma, were selectively studied in nude mice bearing human HT-29 and WiDr xenografts. After injection, [99mTc]Demotensin 3 and 4 effectively and specifically localized in the experimental tumors and were rapidly excreted via the kidneys into the urine, exhibiting overall biodistribution patterns favorable for NTS1-R-targeted tumor imaging in man.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By analogy to the structural diversity of covalent bond networks between atoms within organic molecules, one can design topologically diverse peptides from mathematical graphs by assigning amino acids to graph nodes and peptide bonds to graph edges. The key is to use diamino acids or amino diacids as equivalents of trivalent graph nodes, which enables a variety of graph topologies beyond the standard linear and monocyclic graphs in natural peptides. Here the bicyclic decapeptide A1FGk2VFPE1AG2 (1b) was prepared and crystallized to assign its bridge stereochemistry. The bridge configuration appears as planned by the chirality of the branching amino acids. Bicyclization furthermore depends on the presence of matched chiralities in the branching amino acids. The stereoselective formation of the second bridge opens the way for the synthesis of a large family of bicyclic peptides as promising new scaffolds for drug design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coagulation factor XIII (FXIII) stabilizes fibrin fibers and is therefore a major player in the maintenance of hemostasis. FXIII is activated by thrombin resulting in cleavage and release of the FXIII activation peptide (AP-FXIII). The objective of this study was to characterize the released AP-FXIII and determine specific features that may be used for its specific detection. We analyzed the structure of bound AP-FXIII within the FXIII A-subunit and interactions of AP-FXIII by hydrogen bonds with both FXIII A-subunit monomers. We optimized our previously developed AP-FXIII ELISA by using 2 monoclonal antibodies. We determined high binding affinities between the antibodies and free AP-FXIII and demonstrated specific binding by epitope mapping analyses with surface plasmon resonance and enzyme-linked immunosorbent assay. Because the structure of free AP-FXIII had been characterized so far by molecular modeling only, we performed structural analysis by nuclear magnetic resonance. Recombinant AP-FXIII was largely flexible both in plasma and water, differing significantly from the rigid structure in the bound state. We suggest that the recognized epitope is either occluded in the noncleaved form or possesses a structure that does not allow binding to the antibodies. On the basis of our findings, we propose AP-FXIII as a possible new marker for acute thrombotic events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virus-like particles (VLPs) are non-infectious self-assembling nanoparticles, useful in medicine and nanotechnology. Their repetitive molecularly-defined architecture is attractive for engineering multivalency, notably for vaccination. However, decorating VLPs with target-antigens by genetic fusion or chemical modification is time-consuming and often leads to capsid misassembly or antigen misfolding, hindering generation of protective immunity. Here we establish a platform for irreversibly decorating VLPs simply by mixing with protein antigen. SpyCatcher is a genetically-encoded protein designed to spontaneously form a covalent bond to its peptide-partner SpyTag. We expressed in E. coli VLPs from the bacteriophage AP205 genetically fused to SpyCatcher. We demonstrated quantitative covalent coupling to SpyCatcher-VLPs after mixing with SpyTag-linked to malaria antigens, including CIDR and Pfs25. In addition, we showed coupling to the VLPs for peptides relevant to cancer from epidermal growth factor receptor and telomerase. Injecting SpyCatcher-VLPs decorated with a malarial antigen efficiently induced antibody responses after only a single immunization. This simple, efficient and modular decoration of nanoparticles should accelerate vaccine development, as well as other applications of nanoparticle devices.