2 resultados para Pensamento Lean
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Oxidative killing is the primary defense against surgical pathogens; risk of infection is inversely related to tissue oxygenation. Subcutaneous tissue oxygenation in obese patients is significantly less than in lean patients during general anesthesia. However, it remains unknown whether reduced intraoperative tissue oxygenation in obese patients results from obesity per se or from a combination of anesthesia and surgery. In a pilot study, we tested the hypothesis that tissue oxygenation is reduced in spontaneously breathing, unanesthetized obese volunteers. METHODS: Seven lean volunteers with a body mass index (BMI) of 22 +/- 2 kg/m(2) were compared to seven volunteers with a BMI of 46 +/- 4 kg/m(2). Volunteers were subjected to the following oxygen challenges: (1) room air; (2) 2 l/min oxygen via nasal prongs, (3) 6 l/min oxygen through a rebreathing face mask; (4) oxygen as needed to achieve an arterial oxygen pressure (arterial pO(2)) of 200 mmHg; and (5) oxygen as needed to achieve an arterial pO(2) of 300 mmHg. The oxygen challenges were randomized. Arterial pO(2) was measured with a continuous intraarterial blood gas analyzer (Paratrend 7); deltoid subcutaneous tissue oxygenation was measured with a polarographic microoxygen sensor (Licox). RESULTS: Subcutaneous tissue oxygenation was similar in lean and obese volunteers: (1) room air, 52 +/- 10 vs 58 +/- 8 mmHg; (2) 2 l/min, 77 +/- 25 vs 79 +/- 24 mmHg; (3) 6 l/min, 125 +/- 43 vs 121 +/- 25 mmHg; (4) arterial pO(2) = 200 mmHg, 115 +/- 42 vs 144 +/- 23 mmHg; (5) arterial pO(2) = 300 mmHg, 145 +/- 41 vs 154 +/- 32 mmHg. CONCLUSION: In this pilot study, we could not identify significant differences in deltoid subcutaneous tissue oxygen pressure between lean and morbidly obese volunteers.
Resumo:
The aim of these studies was to investigate whether insulin resistance is primary to skeletal muscle. Myoblasts were isolated from muscle biopsies of 8 lean insulin-resistant and 8 carefully matched insulin-sensitive subjects (metabolic clearance rates as determined by euglycemic-hyperinsulinemic clamp: 5.8 +/- 0.5 vs. 12.3 +/- 1.7 ml x kg(-1) x min(-1), respectively; P < or = 0.05) and differentiated to myotubes. In these cells, insulin stimulation of glucose uptake, glycogen synthesis, insulin receptor (IR) kinase activity, and insulin receptor substrate 1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity were measured. Furthermore, insulin activation of protein kinase B (PKB) was compared with immunoblotting of serine residues at position 473. Basal glucose uptake (1.05 +/- 0.07 vs. 0.95 +/- 0.07 relative units, respectively; P = 0.49) and basal glycogen synthesis (1.02 +/- 0.11 vs. 0.98 +/- 0.11 relative units, respectively; P = 0.89) were not different in myotubes from insulin-resistant and insulin-sensitive subjects. Maximal insulin responsiveness of glucose uptake (1.35 +/- 0.03-fold vs. 1.41 +/- 0.05-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.43) and glycogen synthesis (2.00 +/- 0.13-fold vs. 2.10 +/- 0.16-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.66) were also not different. Insulin stimulation (1 nmol/l) of IR kinase and PI 3-kinase were maximal within 5 min (approximately 8- and 5-fold over basal, respectively), and insulin activation of PKB was maximal within 15 min (approximately 3.5-fold over basal). These time kinetics were not significantly different between groups. In summary, our data show that insulin action and signaling in cultured skeletal muscle cells from normoglycemic lean insulin-resistant subjects is not different from that in cells from insulin-sensitive subjects. This suggests an important role of environmental factors in the development of insulin resistance in skeletal muscle.