7 resultados para Pelvic Support Defects
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Reconstruction of the anterior skull base and fronto-orbital framework following extensive tumor resection is both challenging and controversial. Dural defects are covered with multiple sheets of fascia lata that provide sufficient support and avoid herniation. Plating along the skull base is contraindicated. After resection of orbital walls, grafting is necessary if the periosteum or parts of the periorbital tissue had to be removed, to avoid enophthalmus or strabism. Free bone grafts exposed to the sinonasal or pharyngeal cavity are vulnerable to infection or necrosis: therefore, covering the grafts with vascularized tissue, such as the Bichat fat-pad or pedicled temporalis flaps, should reduce these complications. Alloplastic materials are indispensable in cranial defects, whereas microsurgical free tissue transfer is indicated in cases of orbital exenteration and skin defects. The authors review their experience and follow-up of 122 skull base reconstructions following extensive subcranial tumor resection. Most significant complications were pneumocranium in 4.9%, CSF leaks in 3.2%, and partial bone resorption in 8.1%.
Resumo:
ABSTRACT: BACKGROUND: Pelvic x-ray is a routine part of the primary survey of polytraumatized patients according to Advanced Trauma Life Support (ATLS) guidelines. However, pelvic CT is the gold standard imaging technique in the diagnosis of pelvic fractures. This study was conducted to confirm the safety of a modified ATLS algorithm omitting pelvic x-ray in hemodynamically stable polytraumatized patients with clinically stable pelvis in favour of later pelvic examination by CT scan. METHODS: We conducted a retrospective analysis of all polytraumatized patients in our emergency room between 01.07.2004 and 31.01.2006. Inclusion criteria were blunt abdominal trauma, initial hemodynamic stability and a stable pelvis on clinical examination. We excluded patients requiring immediate intervention because of hemodynamic instability. RESULTS: We reviewed the records of n = 452 polytraumatized patients, of which n = 91 fulfilled inclusion criteria (56% male, mean age = 45 years). The mechanism of trauma included 43% road traffic accidents, 47% falls. In 68/91 (75%) patients, both a pelvic x-ray and a CT examination were performed; the remainder had only pelvic CT. In 6/68 (9%) patients, pelvic fracture was diagnosed by pelvic x-ray. None of these 6 patients was found having a false positive pelvic x-ray, i.e. there was no fracture on pelvic CT scan. In 3/68 (4%) cases a fracture was missed in the pelvic x-ray, but confirmed on CT (false negative on x-ray). None of the diagnosed fractures needed an immediate therapeutic intervention. 5 (56%) were classified type A fractures, and another 4 (44%) B 2.1 in computed tomography (AO classification). One A 2.1 fracture was found in a clinically stable patient who only received CT scan (1/23). CONCLUSION: While pelvic x-ray is an integral part of ATLS assessment, this retrospective study suggests that in hemodynamically stable patients with clinically stable pevis, its sensitivity is only 67% and it may safely be omitted in favor of a pelvic CT examination if such is planned in adjunct assessment and available. The results support the safety and utility of our modified ATLS algorithm. A randomized controlled trial using the algorithm can safely be conducted to confirm the results.
Resumo:
OBJECTIVES Previously, the use of enamel matrix derivative (EMD) in combination with a natural bone mineral (NBM) was able to stimulate periodontal ligament cell and osteoblast proliferation and differentiation. Despite widespread use of EMD for periodontal applications, the effects of EMD on bone regeneration are not well understood. The aim of the present study was to test the ability of EMD on bone regeneration in a rat femur defect model in combination with NBM. MATERIALS AND METHODS Twenty-seven rats were treated with either NBM or NBM + EMD and assigned to histological analysis at 2, 4, and 8 weeks. Defect morphology and mineralized bone were assessed by μCT. For descriptive histology, hematoxylin and eosin staining and Safranin O staining were performed. RESULTS Significantly more newly formed trabecular bone was observed at 4 weeks around the NBM particles precoated with EMD when compared with NBM particles alone. The drilled control group, in contrast, achieved minimal bone regeneration at all three time points (P < 0.05). CONCLUSIONS The present results may suggest that EMD has the ability to enhance the speed of new bone formation when combined with NBM particles in rat osseous defects. CLINICAL RELEVANCE These findings may provide additional clinical support for the combination of EMD with bone graft for the repair of osseous and periodontal intrabony defects.
Resumo:
AIM Pharmacological inhibitors of prolyl hydroxylases, also termed hypoxia-mimetic agents (HMAs), when repeatedly injected can support angiogenesis and bone regeneration. However, the possible role of HMA loaded onto bone substitutes to support angiogenesis and bone regeneration under diabetic condition is unknown. The capacity of HMA loaded onto deproteinized bovine bone mineral (DBBM) to support angiogenesis and bone formation was examined in diabetic Wistar rats. METHODS Diabetes was induced by intraperitoneal injection of streptozotocin. The HMA dimethyloxalylglycine (DMOG) and desferrioxamine (DFO) were lyophilized onto DBBM. Calvarial defects were created with a trephine drill and filled with the respective bone substitutes. After 4 weeks of healing, the animals were subjected to histological and histomorphometric analysis. RESULTS In this report, we provide evidence that DMOG loaded onto DBBM can support angiogenesis in vivo. Specifically, we show that DMOG increased the vessel area in the defect site to 2.4% ± 1.3% compared with controls 1.1% ± 0.48% (P = 0.012). There was a trend toward an increased vessel number in the defect site with 38.6 ± 17.4 and 31.0 ± 10.3 in the DMOG and the control group (P = 0.231). The increase in angiogenesis, however, did not translate into enhanced bone formation in the defect area with 9.2% ± 7.1% and 8.4% ± 5.6% in DMOG and control group, respectively. No significant changes were caused by DFO. CONCLUSIONS The results suggest that DMOG loaded onto DBBM can support angiogenesis, but bone formation does not increase accordingly in a type 1 diabetic rat calvarial defect model at the indicated time point.
Resumo:
OBJECTIVE The aim of the present systematic review and meta-analysis was to assess the clinical efficacy of regenerative periodontal surgery of intrabony defects using a combination of enamel matrix derivative (EMD) and bone graft compared with that of EMD alone. MATERIALS AND METHODS The Cochrane Oral Health Group specialist trials, MEDLINE, and EMBASE databases were searched for entries up to February 2014. The primary outcome was gain of clinical attachment (CAL). Weighted means and forest plots were calculated for CAL gain, probing depth (PD), and gingival recession (REC). RESULTS Twelve studies reporting on 434 patients and 548 intrabony defects were selected for the analysis. Mean CAL gain amounted to 3.76 ± 1.07 mm (median 3.63 95 % CI 3.51-3.75) following treatment with a combination of EMD and bone graft and to 3.32 ± 1.04 mm (median 3.40; 95 % CI 3.28-3.52) following treatment with EMD alone. Mean PD reduction measured 4.22 ± 1.20 mm (median 4.10; 95 % CI 3.96-4.24) at sites treated with EMD and bone graft and yielded 4.12 ± 1.07 mm (median 4.00; 95 % CI 3.88-4.12) at sites treated with EMD alone. Mean REC increase amounted to 0.76 ± 0.42 mm (median 0.63; 95 % CI 0.58-0.68) at sites treated with EMD and bone graft and to 0.91 ± 0.26 mm (median 0.90; 95 % CI 0.87-0.93) at sites treated with EMD alone. CONCLUSIONS Within their limits, the present results indicate that the combination of EMD and bone grafts may result in additional clinical improvements in terms of CAL gain and PD reduction compared with those obtained with EMD alone. The potential influence of the chosen graft material or of the surgical procedure (i.e., flap design) on the clinical outcomes is unclear. CLINICAL RELEVANCE The present findings support the use of EMD and bone grafts for the treatment of intrabony periodontal defects.
Resumo:
IRT1 and IRT2 are members of the Arabidopsis ZIP metal transporter family that are specifically induced by iron deprivation in roots and act as heterologous suppressors of yeast mutations inhibiting iron and zinc uptake. Although IRT1 and IRT2 are thought to perform redundant functions as root-specific metal transporters, insertional inactivation of the IRT1 gene alone results in typical symptoms of iron deficiency causing severe leaf chlorosis and lethality in soil. The irt1 mutation is characterized by specific developmental defects, including a drastic reduction of chloroplast thylakoid stacking into grana and lack of palisade parenchyma differentiation in leaves, reduced number of vascular bundles in stems, and irregular patterns of enlarged endodermal and cortex cells in roots. Pulse labeling with 59Fe through the root system shows that the irt1 mutation reduces iron accumulation in the shoots. Short-term labeling with 65Zn reveals no alteration in spatial distribution of zinc, but indicates a lower level of zinc accumulation. In comparison to wild-type, the irt1 mutant responds to iron and zinc deprivation by altered expression of certain zinc and iron transporter genes, which results in the activation of ZIP1 in shoots, reduction of ZIP2 transcript levels in roots, and enhanced expression of IRT2 in roots. These data support the conclusion that IRT1 is an essential metal transporter required for proper development and regulation of iron and zinc homeostasis in Arabidopsis.