46 resultados para Pelagic and littoral regions
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A basic understanding of the ballistic behaviour of projectiles or fragments after entering the human body is essential for the head and neck surgeon in the military environment in order to anticipate the diagnostic and therapeutic consequences of this type of injury. Although a large number of factors influence the missile in flight and after penetration of the body, the most important factor is the amount of energy transmitted to the tissue. Long guns (rifles or shotguns) have a much higher muzzle energy compared to handguns, explaining why the remote effects beyond the bullet track play a major role. While most full metal jacket bullets release their energy after 12-20 cm (depending on the calibre), soft point bullets release their energy immediately after entry into the human body. This results in a major difference in extremity wounds, but not so much in injuries with long bullet paths (e.g. diagonal shots). Shrapnel wounds are usually produced with similarly high kinetic energy to those caused by hand- and long guns. However, fragments tend to dissipate the entire amount of energy within the body, which increases the degree of tissue disruption. Of all relevant injuries in the head and neck region, soft tissue injuries make up the largest proportion (60%), while injuries to the face are seen three times more often than injuries to the neck. Concomitant intracranial or spinal injury is seen in 30% of cases. Due to high levels of wound contamination, the infection rate is approximately 15%, often associated with a complicated and/or multiresistant spectrum of germs.
Resumo:
OBJECTIVES: To test the survival rates, and the technical and biological complication rates of customized zirconia and titanium abutments 5 years after crown insertion. MATERIAL AND METHODS: Twenty-two patients with 40 single implants in maxillary and mandibular canine and posterior regions were included. The implant sites were randomly assigned to zirconia abutments supporting all-ceramic crowns or titanium abutments supporting metal-ceramic crowns. Clinical examinations were performed at baseline, and at 6, 12, 36 and 60 months of follow-up. The abutments and reconstructions were examined for technical and/or biological complications. Probing pocket depth (PPD), plaque control record (PCR) and Bleeding on Probing (BOP) were assessed at abutments (test) and analogous contralateral teeth (control). Radiographs of the implants revealed the bone level (BL) on mesial (mBL) and distal sides (dBL). Data were statistically analyzed with nonparametric mixed models provided by Brunner and Langer and STATA (P < 0.05). RESULTS: Eighteen patients with 18 zirconia and 10 titanium abutments were available at a mean follow-up of 5.6 years (range 4.5-6.3 years). No abutment fracture or loss of a reconstruction occurred. Hence, the survival rate was 100% for both. Survival of implants supporting zirconia abutments was 88.9% and 90% for implants supporting titanium abutments. Chipping of the veneering ceramic occurred at three metal-ceramic crowns supported by titanium abutments. No significant differences were found at the zirconia and titanium abutments for PPD (meanPPD(ZrO2) 3.3 ± 0.6 mm, mPPD(T) (i) 3.6 ± 1.1 mm), PCR (mPCR(Z) (rO) (2) 0.1 ± 0.3, mPCR(T) (i) 0.3 ± 0.2) and BOP (mBOP(Z) (rO) (2) 0.5 ± 0.3, mBOP(T) (i) 0.6 ± 0.3). Moreover, the BL was similar at implants supporting zirconia and titanium abutments (mBL(Z) (rO) (2) 1.8 ± 0.5, dBL(Z) (rO) (2) 2.0 ± 0.8; mBL(T) (i) 2.0 ± 0.8, dBL(T) (i) 1.9 ± 0.8). CONCLUSIONS: There were no statistically or clinically relevant differences between the 5-year survival rates, and the technical and biological complication rates of zirconia and titanium abutments in posterior regions.
Resumo:
The morbilliviruses measles virus (MeV) and canine distemper virus (CDV) both rely on two surface glycoproteins, the attachment (H) and fusion proteins, to promote fusion activity for viral cell entry. Growing evidence suggests that morbilliviruses infect multiple cell types by binding to distinct host cell surface receptors. Currently, the only known in vivo receptor used by morbilliviruses is CD150/SLAM, a molecule expressed in certain immune cells. Here we investigated the usage of multiple receptors by the highly virulent and demyelinating CDV strain A75/17. We based our study on the assumption that CDV-H may interact with receptors similar to those for MeV, and we conducted systematic alanine-scanning mutagenesis on CDV-H throughout one side of the beta-propeller documented in MeV-H to contain multiple receptor-binding sites. Functional and biochemical assays performed with SLAM-expressing cells and primary canine epithelial keratinocytes identified 11 residues mutation of which selectively abrogated fusion in keratinocytes. Among these, four were identical to amino acids identified in MeV-H as residues contacting a putative receptor expressed in polarized epithelial cells. Strikingly, when mapped on a CDV-H structural model, all residues clustered in or around a recessed groove located on one side of CDV-H. In contrast, reported CDV-H mutants with SLAM-dependent fusion deficiencies were characterized by additional impairments to the promotion of fusion in keratinocytes. Furthermore, upon transfer of residues that selectively impaired fusion induction in keratinocytes into the CDV-H of the vaccine strain, fusion remained largely unaltered. Taken together, our results suggest that a restricted region on one side of CDV-H contains distinct and overlapping sites that control functional interaction with multiple receptors.
Resumo:
The study that aimed at understanding the dynamics of forced livestock movements and pastoral livelihood and development options was conducted in Lindi and Ruvuma regions, using both formal and informal approaches. Data were collected from 60 randomly selected Agro-pastoralists/Pastoralists and native farmers using a structured questionnaire. Four villages were involved; two in Lindi region (Matandu and Mkwajuni) and the other two in Ruvuma region (Gumbiro and Muhuwesi). Data were analyzed using descriptive statistics of SPSS to generate means and frequencies. The results indicate that a large number of animals moved into the study area following the eviction order of the government in Ihefu wetlands in 2006/2007. Lindi region was earmarked by the government to receive all the evicted pastoralists. However, by 2008 only 30% of the total cattle that were expected to move into the region had been received. Deaths of many animals on transit, selling of the animals to pay for transportation and other costs while on transit and many pastoralists settling in Coastal and Ruvuma regions before reaching their destinations were reported to be the reasons for the discrepancy observed. To mitigate anticipated conflicts between farmers and pastoralists, Participatory Land Use Management (PLUM) plans were developed in all the study villages in order to demarcate village land area into different uses, including grazing, cropping, settlement and forests. Land units for grazing were supposed to be provided with all necessary livestock infrastructures (dips, charcoal dams, livestock markets and stock routes). However, the land use plans were not able to prevent the anticipated conflicts because most of the livestock infrastructures were lacking, the land use boundaries were not clearly demarcated and there was limited enforcement of village by-laws, since most had not been enacted by the respective district councils. Similarly, the areas allocated for grazing were inadequate for the number of livestock available and thus the carrying capacity exceeded. Thus, land resource-based conflicts between farmers and pastoralists were emerging in the study areas for the reason that most of the important components in the PLUM plans were not in place. Nevertheless, the arrival of pastoralists in the study areas had positive effects on food security and growth of social interactions between pastoralists and farmers including marriages between them. Environmental degradations due to the arrival of livestock were also not evident. Thus, there is a need for the government to purposely set aside enough grazing land with all necessary infrastructures in place for the agro-pastoral/pastoral communities in the country.
Resumo:
OBJECTIVE: To retrospectively evaluate the craniofacial morphology of children with a complete unilateral cleft lip and palate treated with a 1-stage simultaneous cleft repair performed in the first year of life. METHODS: Cephalograms and extraoral profile photographs of 61 consecutively treated patients (42 boys, 19 girls) who had been operated on at 9.2 (SD, 2.0) months by a single experienced surgeon were analyzed at 11.4 (SD, 1.5) years. The noncleft control group comprised 81 children (43 boys and 38 girls) of the same ethnicity at the age of 10.4 (SD, 0.5) years. RESULTS: In children with cleft, the maxilla and mandible were retrusive; the palatal and mandibular planes were more open, and sagittal maxillomandibular relationship was less favorable in comparison to noncleft control subjects. Soft tissues in patients with cleft reflected retrusive morphology of hard tissues--subnasal and supramental regions were less convex, profile was flatter, and nasolabial angle was more acute relative to those of the control subjects. CONCLUSIONS: Craniofacial morphology after 1-stage repair was deviated in comparison with noncleft control subjects. However, the degree of deviation was comparable with that found after treatment with alternative surgical protocols.
Resumo:
Whitefish, genus Coregonus, show exceptional levels of phenotypic diversity with sympatric morphs occurring in numerous postglacial lakes in the northern hemisphere. Here, we studied the effects of human-induced eutrophication on sympatric whitefish morphs in the Swiss lake, Lake Thun. In particular, we addressed the questions whether eutrophication (i) induced hybridization between two ecologically divergent summer-spawning morphs through a loss of environmental heterogeneity, and (ii) induced rapid adaptive morphological changes through changes in the food web structure. Genetic analysis based on 11 microsatellite loci of 282 spawners revealed that the pelagic and the benthic morph represent highly distinct gene pools occurring at different relative proportions on all seven known spawning sites. Gill raker counts, a highly heritable trait, showed nearly discrete distributions for the two morphs. Multilocus genotypes characteristic of the pelagic morph had more gill rakers than genotypes characteristic of benthic morph. Using Bayesian methods, we found indications of recent but limited introgressive hybridization. Comparisons with historical gill raker data yielded median evolutionary rates of 0.24 haldanes and median selection intensities of 0.27 for this trait in both morphs for 1948-2004 suggesting rapid evolution through directional selection at this trait. However, phenotypic plasticity as an alternative explanation for this phenotypic change cannot be discarded. We hypothesize that both the temporal shifts in mean gill raker counts and the recent hybridization reflect responses to changes in the trophic state of the lake induced by pollution in the 1960s, which created novel selection pressures with respect to feeding niches and spawning site preferences.
Resumo:
Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis.
Resumo:
Despite more than 2 decades of neuroimaging investigations, there is currently insufficient evidence to fully understand the neurobiological substrate of auditory hallucinations (AH). However, some progress has been made with imaging studies in patients with AH consistently reporting altered structure and function in speech and language, sensory, and nonsensory regions. This report provides an update of neuroimaging studies of AH with a particular emphasis on more recent anatomical, physiological, and neurochemical imaging studies. Specifically, we provide (1) a review of findings in schizophrenia and nonschizophrenia voice hearers, (2) a discussion regarding key issues that have interfered with progress, and (3) practical recommendations for future studies.
Resumo:
Aim Parrots are thought to have originated on Gondwana during the Cretaceous. The initial split within crown group parrots separated the New Zealand taxa from the remaining extant species and was considered to coincide with the separation of New Zealand from Gondwana 82-85 Ma, assuming that the diversification of parrots was mainly shaped by vicariance. However, the distribution patterns of several extant parrot groups cannot be explained without invoking transoceanic dispersal, challenging this assumption. Here, we present a temporal and spatial framework for the diversification of parrots using external avian fossils as calibration points in order to evaluate the relative importance of the influences of past climate change, plate tectonics and ecological opportunity. Location Australasian, African, Indo-Malayan and Neotropical regions. Methods Phylogenetic relationships were investigated using partial sequences of the nuclear genes c-mos, RAG-1 and Zenk of 75 parrot and 21 other avian taxa. Divergence dates and confidence intervals were estimated using a Bayesian relaxed molecular clock approach. Biogeographic patterns were evaluated taking temporal connectivity between areas into account. We tested whether diversification remained constant over time and if some parrot groups were more species-rich than expected given their age. Results Crown group diversification of parrots started only about 58 Ma, in the Palaeogene, significantly later than previously thought. The Australasian lories and possibly also the Neotropical Arini were found to be unexpectedly species-rich. Diversification rates probably increased around the Eocene/Oligocene boundary and in the middle Miocene, during two periods of major global climatic aberrations characterized by global cooling. Main conclusions The diversification of parrots was shaped by climatic and geological events as well as by key innovations. Initial vicariance events caused by continental break-up were followed by transoceanic dispersal and local radiations. Habitat shifts caused by climate change and mountain orogenesis may have acted as a catalyst to the diversification by providing new ecological opportunities and challenges as well as by causing isolation as a result of habitat fragmentation. The lories constitute the only highly nectarivorous parrot clade, and their diet shift, associated with morphological innovation, may have acted as an evolutionary key innovation, allowing them to explore underutilized niches and promoting their diversification.
Resumo:
Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins. Current evidence suggests that in Neosporacaninum and Toxoplasmagondii, which are closely related to B. besnoiti, PDI play an important role in host cell invasion, is a relevant target for the host immune response, and represents a promising drug target and/or vaccine candidate. In this work, we present the nucleotide sequence of the B. besnoiti PDI gene. BbPDI belongs to the thioredoxin-like superfamily (cluster 00388) and is included in the PDI_a family (cluster defined cd02961) and the PDI_a_PDI_a'_c subfamily (cd02995). A 3D theoretical model was built by comparative homology using Swiss-Model server, using as a template the crystallographic deduced model of Tapasin-ERp57 (PDB code 3F8U chain C). Analysis of the phylogenetic tree for PDI within the phylum apicomplexa reinforces the close relationship among B. besnoiti, N. caninum and T. gondii. When subjected to a PDI-assay based on the polymerisation of reduced insulin, recombinant BbPDI expressed in E. coli exhibited enzymatic activity, which was inhibited by bacitracin. Antiserum directed against recombinant BbPDI reacted with PDI in Western blots and by immunofluorescence with B. besnoiti tachyzoites and bradyzoites.
Resumo:
Purpose: To assess possible association between intrinsic structural damage and clinical disability by correlating spinal cord diffusion-tensor (DT) imaging data with electrophysiological parameters in patients with a diagnosis of multiple sclerosis (MS). Materials and Methods: This study was approved by the local ethical committee according to the declaration of Helsinki and written informed consent was obtained. DT images and T1- and T2-weighted images of the spinal cord were acquired in 28 healthy volunteers and 41 MS patients. Fractional anisotropy (FA) and apparent diffusion coefficients were evaluated in normal-appearing white matter (NAWM) at the cervical level and were correlated with motor-evoked potentials (n = 34). Asymmetry index was calculated for FA values with corresponding left and right regions of interest as percentage of the absolute difference between these values relative to the sum of the respective FA values. Statistical analysis included Spearman rank correlations, Mann-Whitney test, and reliability analysis. Results: Healthy volunteers had low asymmetry index (1.5%-2.2%). In MS patients, structural abnormalities were reflected by asymmetric decrease of FA (asymmetry index: 3.6%; P = .15). Frequently asymmetrically affected among MS patients was left and right central motor conduction time (CMCT) to abductor digiti minimi muscle (ADMM) (asymmetry index, 15%-16%) and tibialis anterior muscle (TAM) (asymmetry index, 9.5%-14.1%). Statistically significant correlations of functional (ie, electrophysiological) and structural (ie, DT imaging) asymmetries were found (P = .005 for CMCT to ADMM; P = .007 for CMCT to TAM) for the cervical lateral funiculi, which comprise the crossed pyramidal tract. Interobserver reliability for DT imaging measurements was excellent (78%-87%). Conclusion: DT imaging revealed asymmetric anatomic changes in spinal cord NAWM, which corresponded to asymmetric electrophysiological deficits for both arms and legs, and reflected a specific structure-function relationship in the human spinal cord. © RSNA, 2013.
Resumo:
Fossils of chironomid larvae (non-biting midges) preserved in lake sediments are well-established palaeotemperature indicators which, with the aid of numerical chironomid-based inference models (transfer functions), can provide quantitative estimates of past temperature change. This approach to temperature reconstruction relies on the strong relationship between air and lake surface water temperature and the distribution of individual chironomid taxa (species, species groups, genera) that has been observed in different climate regions (arctic, subarctic, temperate and tropical) in both the Northern and Southern hemisphere. A major complicating factor for the use of chironomids for palaeoclimate reconstruction which increases the uncertainty associated with chironomid-based temperature estimates is that the exact nature of the mechanism responsible for the strong relationship between temperature and chironomid assemblages in lakes remains uncertain. While a number of authors have provided state of the art overviews of fossil chironomid palaeoecology and the use of chironomids for temperature reconstruction, few have focused on examining the ecological basis for this approach. Here, we review the nature of the relationship between chironomids and temperature based on the available ecological evidence. After discussing many of the surveys describing the distribution of chironomid taxa in lake surface sediments in relation to temperature, we also examine evidence from laboratory and field studies exploring the effects of temperature on chironomid physiology, life cycles and behaviour. We show that, even though a direct influence of water temperature on chironomid development, growth and survival is well described, chironomid palaeoclimatology is presently faced with the paradoxical situation that the relationship between chironomid distribution and temperature seems strongest in relatively deep, thermally stratified lakes in temperate and subarctic regions in which the benthic chironomid fauna lives largely decoupled from the direct influence of air and surface water temperature. This finding suggests that indirect effects of temperature on physical and chemical characteristics of lakes play an important role in determining the distribution of lake-living chironomid larvae. However, we also demonstrate that no single indirect mechanism has been identified that can explain the strong relationship between chironomid distribution and temperature in all regions and datasets presently available. This observation contrasts with the previously published hypothesis that climatic effects on lake nutrient status and productivity may be largely responsible for the apparent correlation between chironomid assemblage distribution and temperature. We conclude our review by summarizing the implications of our findings for chironomid-based palaeoclimatology and by pointing towards further avenues of research necessary to improve our mechanistic understanding of the chironomid-temperature relationship.