3 resultados para Peixe neotropical
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Cupiennin 1a (GFGALFKFLAKKVAKTVAKQAAKQGAKYVVNKQME-NH2) is a potent venom component of the spider Cupiennius salei. Cupiennin 1a shows multifaceted activity. In addition to known antimicrobial and cytolytic properties, cupiennin 1a inhibits the formation of nitric oxide by neuronal nitric oxide synthase at an IC50 concentration of 1.3 +/- 0.3 microM. This is the first report of neuronal nitric oxide synthase inhibition by a component of a spider venom. The mechanism by which cupiennin 1a inhibits neuronal nitric oxide synthase involves complexation with the regulatory protein calcium calmodulin. This is demonstrated by chemical shift changes that occur in the heteronuclear single quantum coherence spectrum of 15N-labelled calcium calmodulin upon addition of cupiennin 1a. The NMR data indicate strong binding within a complex of 1 : 1 stoichiometry.
Resumo:
Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a wide range of population density on Barro Colorado Island in Panama and assessed its consequences for seed distributions. We found that frugivore visitation, seed removal and dispersal distance all declined with population density of A. butyracea, demonstrating NDD of seed dispersal due to competition for dispersers. Furthermore, as population density increased, the distances of seeds from the nearest adult decreased, conspecific seed crowding increased and seedling recruitment success decreased, all patterns expected under poorer dispersal. Unexpectedly, however, our analyses showed that NDD of dispersal did not contribute substantially to these changes in the quality of the seed distribution; patterns with population density were dominated by effects due solely to increasing adult and seed density.
Resumo:
1 Light availability may be crucial for understanding dynamics of plant–herbivore interactions in temperate and tropical forest communities. This is because local light availability can influence both tree seedling tolerance and susceptibility to herbivory – yet how they mediate levels of insect herbivory that vary with the density of host population is virtually unknown. Here we tested predictions of three key, non-mutually exclusive hypotheses of plant–herbivore interactions: the Limiting Resource Model (LRM), the Plant Vigour Hypothesis (PVH), and the Janzen-Connell Mechanism (JCM). 2 In an Amazonian forest, we planted Swietenia macrophylla seedlings (c. 5 months old) into natural canopy gaps and the shaded understorey and simulated the damage patterns of the specialist herbivore moth, Steniscadia poliophaea, by clipping seedling leaves. Over the next 8 months, we monitored seedling performance in terms of growth and survivorship and also quantified herbivory to new young leaves on a seasonal basis. 3 In support of the LRM, severe leaf damage (≥ 50%) was lethal for Swietenia macrophylla seedlings in the understorey, but in gaps only reduced seedling growth. In support of the PVH, gap seedlings suffered greater post-simulated herbivory (up to 100% defoliation) by S. poliophaea caterpillars than their understorey counterparts. 4 Adding a novel dimension to the Janzen–Connell hypothesis, we found that early wet season herbivory of seedlings in gaps increased with conspecific adult density within a 125-m radius; whereas in the understorey only those seedlings within 50 m of a Swietenia tree were attacked by caterpillars. 5 Synthesis. These results suggest lepidopterans that need young leaves for food may forage more widely in forests to find seedlings in light-rich canopy gaps. Moths may achieve this successfully by being first attracted to gaps, and then searching within them for suitable hosts. A conceptual model, integrating conspecific adult tree density with light-driven changes in seedling tolerance/vigour and their susceptibility to herbivory and mortality, is presented. Spatial variation in the light available to tree seedlings often affects their tolerance and vigour, which may have important consequences for leaf-chewing insects and the scale of density-dependent herbivory in forests.