12 resultados para Peatlands.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid changes in atmospheric methane (CH4), temperature and precipitation are documented by Greenland ice core data both for glacial times (the so called Dansgaard-Oeschger (D-O) events) as well as for a cooling event in the early Holocene (the 8.2 kyr event). The onsets of D-O warm events are paralleled by abrupt increases in CH4 by up to 250 ppb in a few decades. Vice versa, the 8.2 kyr event is accompanied by an intermittent decrease in CH4 of about 80 ppb over 150 yr. The abrupt CH4 changes are thought to mainly originate from source emission variations in tropical and boreal wet ecosystems, but complex process oriented bottom-up model estimates of the changes in these ecosystems during rapid climate changes are still missing. Here we present simulations of CH4 emissions from northern peatlands with the LPJ-Bern dynamic global vegetation model. The model represents CH4 production and oxidation in soils and transport by ebullition, through plant aerenchyma, and by diffusion. Parameters are tuned to represent site emission data as well as inversion-based estimates of northern wetland emissions. The model is forced with climate input data from freshwater hosing experiments using the NCAR CSM1.4 climate model to simulate an abrupt cooling event. A concentration reduction of ~10 ppb is simulated per degree K change of mean northern hemispheric surface temperature in peatlands. Peatland emissions are equally sensitive to both changes in temperature and in precipitation. If simulated changes are taken as an analogy to the 8.2 kyr event, boreal peatland emissions alone could only explain 23 of the 80 ppb decline in atmospheric methane concentration. This points to a significant contribution to source changes from low latitude and tropical wetlands to this event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of northern high-latitude peatlands played an important role in the carbon (C) balance of the land biosphere since the Last Glacial Maximum (LGM). At present, carbon storage in northern peatlands is substantial and estimated to be 500 ± 100 Pg C (1 Pg C = 1015 g C). Here, we develop and apply a peatland module embedded in a dynamic global vegetation and land surface process model (LPX-Bern 1.0). The peatland module features a dynamic nitrogen cycle, a dynamic C transfer between peatland acrotelm (upper oxic layer) and catotelm (deep anoxic layer), hydrology- and temperature-dependent respiration rates, and peatland specific plant functional types. Nitrogen limitation down-regulates average modern net primary productivity over peatlands by about half. Decadal acrotelm-to-catotelm C fluxes vary between −20 and +50 g C m−2 yr−1 over the Holocene. Key model parameters are calibrated with reconstructed peat accumulation rates from peat-core data. The model reproduces the major features of the peat core data and of the observation-based modern circumpolar soil carbon distribution. Results from a set of simulations for possible evolutions of northern peat development and areal extent show that soil C stocks in modern peatlands increased by 365–550 Pg C since the LGM, of which 175–272 Pg C accumulated between 11 and 5 kyr BP. Furthermore, our simulations suggest a persistent C sequestration rate of 35–50 Pg C per 1000 yr in present-day peatlands under current climate conditions, and that this C sink could either sustain or turn towards a source by 2100 AD depending on climate trajectories as projected for different representative greenhouse gas concentration pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulating the spatio-temporal dynamics of inundation is key to understanding the role of wetlands under past and future climate change. Earlier modelling studies have mostly relied on fixed prescribed peatland maps and inundation time series of limited temporal coverage. Here, we describe and assess the the Dynamical Peatland Model Based on TOPMODEL (DYPTOP), which predicts the extent of inundation based on a computationally efficient TOPMODEL implementation. This approach rests on an empirical, grid-cell-specific relationship between the mean soil water balance and the flooded area. DYPTOP combines the simulated inundation extent and its temporal persistency with criteria for the ecosystem water balance and the modelled peatland-specific soil carbon balance to predict the global distribution of peatlands. We apply DYPTOP in combination with the LPX-Bern DGVM and benchmark the global-scale distribution, extent, and seasonality of inundation against satellite data. DYPTOP successfully predicts the spatial distribution and extent of wetlands and major boreal and tropical peatland complexes and reveals the governing limitations to peatland occurrence across the globe. Peatlands covering large boreal lowlands are reproduced only when accounting for a positive feedback induced by the enhanced mean soil water holding capacity in peatland-dominated regions. DYPTOP is designed to minimize input data requirements, optimizes computational efficiency and allows for a modular adoption in Earth system models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim Our aims were to compare the composition of testate amoeba (TA) communities from Santa Cruz Island, Galápagos Archipelago, which are likely in existence only as a result of anthropogenic habitat transformation, with similar naturally occurring communities from northern and southern continental peatlands. Additionally, we aimed at assessing the importance of niche-based and dispersal-based processes in determining community composition and taxonomic and functional diversity. Location The humid highlands of the central island of Santa Cruz, Galápagos Archipelago. Methods We survey the alpha, beta and gamma taxonomic and functional diversities of TA, and the changes in functional traits along a gradient of wet to dry habitats. We compare the TA community composition, abundance and frequency recorded in the insular peatlands with that recorded in continental peatlands of Northern and Southern Hemispheres. We use generalized linear models to determine how environmental conditions influence taxonomic and functional diversity as well as the mean values of functional traits within communities. We finally apply variance partitioning to assess the relative importance of niche- and dispersal-based processes in determining community composition. Results TA communities in Santa Cruz Island were different from their Northern Hemisphere and South American counterparts with most genera considered as characteristic for Northern Hemisphere and South American Sphagnum peatlands missing or very rare in the Galápagos. Functional traits were most correlated with elevation and site topography and alpha functional diversity to the type of material sampled and site topography. Community composition was more strongly correlated with spatial variables than with environmental ones. Main conclusions TA communities of the Sphagnum peatlands of Santa Cruz Island and the mechanisms shaping these communities contrast with Northern Hemisphere and South American peatlands. Soil moisture was not a strong predictor of community composition most likely because rainfall and clouds provide sufficient moisture. Dispersal limitation was more important than environmental filtering because of the isolation of the insular peatlands from continental ones and the young ecological history of these ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural methane (CH4) emissions from wet ecosystems are an important part of today's global CH4 budget. Climate affects the exchange of CH4 between ecosystems and the atmosphere by influencing CH4 production, oxidation, and transport in the soil. The net CH4 exchange depends on ecosystem hydrology, soil and vegetation characteristics. Here, the LPJ-WHyMe global dynamical vegetation model is used to simulate global net CH4 emissions for different ecosystems: northern peatlands (45°–90° N), naturally inundated wetlands (60° S–45° N), rice agriculture and wet mineral soils. Mineral soils are a potential CH4 sink, but can also be a source with the direction of the net exchange depending on soil moisture content. The geographical and seasonal distributions are evaluated against multi-dimensional atmospheric inversions for 2003–2005, using two independent four-dimensional variational assimilation systems. The atmospheric inversions are constrained by the atmospheric CH4 observations of the SCIAMACHY satellite instrument and global surface networks. Compared to LPJ-WHyMe the inversions result in a~significant reduction in the emissions from northern peatlands and suggest that LPJ-WHyMe maximum annual emissions peak about one month late. The inversions do not put strong constraints on the division of sources between inundated wetlands and wet mineral soils in the tropics. Based on the inversion results we diagnose model parameters in LPJ-WHyMe and simulate the surface exchange of CH4 over the period 1990–2008. Over the whole period we infer an increase of global ecosystem CH4 emissions of +1.11 Tg CH4 yr−1, not considering potential additional changes in wetland extent. The increase in simulated CH4 emissions is attributed to enhanced soil respiration resulting from the observed rise in land temperature and in atmospheric carbon dioxide that were used as input. The long-term decline of the atmospheric CH4 growth rate from 1990 to 2006 cannot be fully explained with the simulated ecosystem emissions. However, these emissions show an increasing trend of +3.62 Tg CH4 yr−1 over 2005–2008 which can partly explain the renewed increase in atmospheric CH4 concentration during recent years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peatlands are widely exploited archives of paleoenvironmental change. We developed and compared multiple transfer functions to infer peatland depth to the water table (DWT) and pH based on testate amoeba (percentages, or presence/absence), bryophyte presence/absence, and vascular plant presence/absence data from sub-alpine peatlands in the SE Swiss Alps in order to 1) compare the performance of single-proxy vs. multi-proxy models and 2) assess the performance of presence/absence models. Bootstrapping cross-validation showing the best performing single-proxy transfer functions for both DWT and pH were those based on bryophytes. The best performing transfer functions overall for DWT were those based on combined testate amoebae percentages, bryophytes and vascular plants; and, for pH, those based on testate amoebae and bryophytes. The comparison of DWT and pH inferred from testate amoeba percentages and presence/absence data showed similar general patterns but differences in the magnitude and timing of some shifts. These results show new directions for paleoenvironmental research, 1) suggesting that it is possible to build good-performing transfer functions using presence/absence data, although with some loss of accuracy, and 2) supporting the idea that multi-proxy inference models may improve paleoecological reconstruction. The performance of multi-proxy and single-proxy transfer functions should be further compared in paleoecological data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of hydrological, botanical, macro- and micro-climatological processes are involved in the formation of patterned peatlands. La Grande Tsa at 2336 m a.s.l. is probably the highest bog in the central Swiss Alps and is unique in its pattern. In two of five pools there is in the contact zone between the basal peat and the overlying gyttja an unconformity in the depth-age models based on radiocarbon dates. Palynostratigraphies of cores from a ridge and a pool confirm the occurrence of an unconformity in the contact zone. We conclude that deepening of the pools results from decomposition of peat. The fact that the dated unconformities in the two pools and the unconformity in the ridge-core all fall within the Bronze Age suggest they were caused by events external to the bog. We hypothesize that early transhumance resulted in anthropogenic lowering of the timberline, which resulted in a reduction in the leaf-area index and evapotranspiration, and in higher water levels and thus pool formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability of terrestrial carbon reservoirs is thought to be closely linked to variations in climate 1, but the magnitude of carbon–climate feedbacks has proved dificult to constrain for both modern 2–4 and millennial 5–13 timescales. Reconstructions of atmospheric CO2 concentrations for the past thousand years have shown fluctuations on multidecadal to centennial timescales 5–7, but the causes of these fluctuations are unclear. Here we report high-resolution carbon isotope measurements of CO2 trapped within the ice of the West Antarctic Ice Sheet Divide ice core for the past 1,000 years. We use a deconvolution approach 14 to show that changes in terrestrial organic carbon stores best explain the observed multidecadal variations in the 13 C of CO2 and in CO2 concentrations from 755 to 1850 CE. If significant long-term carbon emissions came from pre-industrial anthropogenic land-use changes over this interval, the emissions must have been offset by a natural terrestrial sink for 13 C-depleted carbon, such as peatlands. We find that on multidecadal timescales, carbon cycle changes seem to vary with reconstructed regional climate changes. We conclude that climate variability could be an important control of fluctuations in land carbon storage on these timescales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic soils in peatlands store a great proportion of the global soil carbon pool and can lose carbon via the atmosphere due to degradation. In Germany, most of the greenhouse gas (GHG) emissions from organic soils are attributed to sites managed as grassland. Here, we investigated a land use gradient from near-natural wetland (NW) to an extensively managed (GE) to an intensively managed grassland site (GI), all formed in the same bog complex in northern Germany. Vertical depth profiles of δ13C, δ15N, ash content, C / N ratio and bulk density as well as radiocarbon ages were studied to identify peat degradation and to calculate carbon loss. At all sites, including the near-natural site, δ13C depth profiles indicate aerobic decomposition in the upper horizons. Depth profiles of δ15N differed significantly between sites with increasing δ15N values in the top soil layers paralleling an increase in land use intensity owing to differences in peat decomposition and fertilizer application. At both grassland sites, the ash content peaked within the first centimetres. In the near-natural site, ash contents were highest in 10–60 cm depth. The ash profiles, not only at the managed grassland sites, but also at the near-natural site indicate that all sites were influenced by anthropogenic activities either currently or in the past, most likely due to drainage. Based on the enrichment of ash content and changes in bulk density, we calculated the total carbon loss from the sites since the peatland was influenced by anthropogenic activities. Carbon loss at the sites increased in the following order: NW < GE < GI. Radiocarbon ages of peat in the topsoil of GE and GI were hundreds of years, indicating the loss of younger peat material. In contrast, peat in the first centimetres of the NW was only a few decades old, indicating recent peat growth. It is likely that the NW site accumulates carbon today but was perturbed by anthropogenic activities in the past. Together, all biogeochemical parameters indicate a degradation of peat due to (i) conversion to grassland with historical drainage and (ii) land use intensification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sphagnum peatlands in the oceanic-continental transition zone of Poland are currently influenced by climatic and anthropogenic factors that lead to peat desiccation and susceptibility to fire. Little is known about the response of Sphagnum peatland testate amoebae (TA) to the combined effects of drought and fire. To understand the relationships between hydrology and fire dynamics, we used high-resolution multi-proxy palaeoecological data to reconstruct 2000 years of mire history in northern Poland. We employed a new approach for Polish peatlands – joint TA-based water table depth and charcoal-inferred fire activity reconstructions. In addition, the response of most abundant TA hydrological indicators to charcoal-inferred fire activity was assessed. The results show four hydrological stages of peatland development: moderately wet (from ∼35 BC to 800 AD), wet (from ∼800 to 1390 AD), dry (from ∼1390 to 1700 AD) and with an instable water table (from ∼1700 to 2012 AD). Fire activity has increased in the last millennium after constant human presence in the mire surroundings. Higher fire activity caused a rise in the water table, but later an abrupt drought appeared at the onset of the Little Ice Age. This dry phase is characterized by high ash contents and high charcoal-inferred fire activity. Fires preceded hydrological change and the response of TA to fire was indirect. Peatland drying and hydrological instability was connected with TA community changes from wet (dominance of Archerella flavum, Hyalosphenia papilio, Amphitrema wrightianum) to dry (dominance of Cryptodifflugia oviformis, Euglypha rotunda); however, no clear fire indicator species was found. Anthropogenic activities can increase peat fires and cause substantial hydrology changes. Our data suggest that increased human fire activity was one of the main factors that influenced peatland hydrology, though the mire response through hydrological changes towards drier conditions was delayed in relation to the surrounding vegetation changes.