6 resultados para Pavements overlays

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new image-guided microscope using augmented reality overlays has been developed. Unlike other systems, the novelty of our design consists in mounting a precise mini and low-cost tracker directly on the microscope to track the motion of the surgical tools and the patient. Correctly scaled cut-views of the pre-operative computed tomography (CT) stack can be displayed on the overlay, orthogonal to the optical view or even including the direction of a clinical tool. Moreover, the system can manage three-dimensional models for tumours or bone structures and allows interaction with them using virtual tools, showing trajectories and distances. The mean error of the overlay was 0.7 mm. Clinical accuracy has shown results of 1.1-1.8 mm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When substance loss caused by erosive tooth wear reaches a certain degree, oral rehabilitation becomes necessary. Prior to the most recent decade, the severely eroded dentition could only be rehabilitated by the provision of extensive crown and bridge work or removable overdentures. As a result of the improvements in composite restorative materials, and in adhesive techniques, it has become possible to rehabilitate eroded dentitions in a less invasive manner. However, even today advanced erosive destruction requires the placement of more extensive restorations such as ceramic veneers or overlays and crowns. It has to be kept in mind that the etiology of the erosive lesions needs to be determined in order to halt the disease, otherwise the erosive process will continue to destroy tooth substance. This overview presents aspects concerning the restorative materials as well as the treatment options available to rehabilitate patients with erosion, from minimally invasive direct composite reconstructions to adhesively retained all-ceramic restorations. Restorative treatment is dependent on individual circumstances and the perceived needs and concerns of the patient. Long-term success is only possible when the cause is eliminated. In all situations, the restorative preparations have to follow the principles of minimally invasive treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surgical navigation systems visualize the positions and orientations of surgical instruments and implants as graphical overlays onto a medical image of the operated anatomy on a computer monitor. The orthopaedic surgical navigation systems could be categorized according to the image modalities that are used for the visualization of surgical action. In the so-called CT-based systems or 'surgeon-defined anatomy' based systems, where a 3D volume or surface representation of the operated anatomy could be constructed from the preoperatively acquired tomographic data or through intraoperatively digitized anatomy landmarks, a photorealistic rendering of the surgical action has been identified to greatly improve usability of these navigation systems. However, this may not hold true when the virtual representation of surgical instruments and implants is superimposed onto 2D projection images in a fluoroscopy-based navigation system due to the so-called image occlusion problem. Image occlusion occurs when the field of view of the fluoroscopic image is occupied by the virtual representation of surgical implants or instruments. In these situations, the surgeon may miss part of the image details, even if transparency and/or wire-frame rendering is used. In this paper, we propose to use non-photorealistic rendering to overcome this difficulty. Laboratory testing results on foamed plastic bones during various computer-assisted fluoroscopybased surgical procedures including total hip arthroplasty and long bone fracture reduction and osteosynthesis are shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract. Lake Ohrid shared by the Republics of Albania and Macedonia is formed by a tectonically active graben within the south Balkans and suggested to be the oldest lake in Europe. Several studies have shown that the lake provides a valuable record of climatic and environmental changes and a distal tephrostratigraphic record of volcanic eruptions from Italy. Fault structures identified in seismic data demonstrate that sediments have also the potential to record tectonic activity in the region. Here, we provide an example of linking seismic and sedimentological information with tectonic activity and historical documents. Historical documents indicate that a major earthquake destroyed the city of Lychnidus (today: city of Ohrid) in the early 6th century AD. Multichannel seismic profiles, parametric sediment echosounder profiles, and a 10.08m long sediment record from the western part of the lake indicate a 2m thick mass wasting deposit, which is tentatively correlated with this earthquake. The mass wasting deposit is chronologically well constrained, as it directly overlays the AD472/AD 512 tephra. Moreover, radiocarbon dates and cross correlation with other sediment sequences with similar geochemical characteristics of the Holocene indicate that the mass wasting event took place prior to the onset of the Medieval Warm Period, and is attributed it to one of the known earthquakes in the region in the early 6th century AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The northern section of the Bohemian Cretaceous Basin has been the site of intensive U exploitation with harmful impacts on groundwater quality. The understanding of groundwater flow and age distribution is crucial for the prediction of the future dispersion and impact of the contamination. State of the art tracer methods (3H, 3He, 4He, 85Kr, 39Ar and 14C) were, therefore, used to obtain insights to ageing and mixing processes of groundwater along a north–south flow line in the centre of the two most important aquifers of Cenomanian and middle Turonian age. Dating of groundwater is particularly complex in this area as: (i) groundwater in the Cenomanian aquifer is locally affected by fluxes of geogenic and biogenic gases (e.g. CO2, CH4, He) and by fossil brines in basement rocks rich in Cl and SO4; (ii) a thick unsaturated zone overlays the Turonian aquifer; (iii) a periglacial climate and permafrost conditions prevailed during the Last Glacial Maximum (LGM), and iv) the wells are mostly screened over large depth intervals. Large disagreements in 85Kr and 3H/3He ages indicate that processes other than ageing have affected the tracer data in the Turonian aquifer. Mixing with older waters (>50 a) was confirmed by 39Ar activities. An inverse modelling approach, which included time lags for tracer transport throughout the unsaturated zone and degassing of 3He, was used to estimate the age of groundwater. Best fits between model and field results were obtained for mean residence times varying from modern up to a few hundred years. The presence of modern water in this aquifer is correlated with the occurrence of elevated pollution (e.g. nitrates). An increase of reactive geochemical indicators (e.g. Na) and radiogenic 4He, and a decrease in 14C along the flow direction confirmed groundwater ageing in the deeper confined Cenomanian aquifer. Radiocarbon ages varied from a few hundred years to more than 20 ka. Initial 14C activity for radiocarbon dating was calibrated by means of 39Ar measurements. The 14C age of a sample recharged during the LGM was further confirmed by depleted stable isotope signatures and near freezing point noble gas temperature. Radiogenic 4He accumulated in groundwater with concentrations increasing linearly with 14C ages. This enabled the use of 4He to validate the dating range of 14C and extend it to other parts of this aquifer. In the proximity of faults, 39Ar in excess of modern concentrations and 14C dead CO2 sources, elevated 3He/4He ratios and volcanic activity in Oligocene to Quaternary demonstrate the influence of gas of deeper origin and impeded the application of 4He, 39Ar and 14C for groundwater dating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When substance loss caused by erosive tooth wear reaches a certain degree, oral rehabilitation becomes necessary. Until some 20 years ago, the severely eroded dentition could only be rehabilitated by the provision of extensive crown and bridge work or removable overdentures. As a result of the improvements in resin composite restorative materials, and in adhesive techniques, it has become possible to rehabilitate eroded dentitions in a less invasive manner. However, even today advanced erosive destruction requires the placement of more extensive restorations such as overlays and crowns. It has to be kept in mind that the etiology of the erosive lesions needs to be determined in order to halt the disease, otherwise the erosive process will continue to destroy tooth substance. This overview presents aspects concerning the restorative materials as well as the treatment options available to rehabilitate patients with erosive tooth wear, from minimally invasive direct composite reconstructions to adhesively retained all-ceramic restorations. Restorative treatment is dependent on individual circumstances and the perceived needs and concerns of the patient. Long-term success is only possible when the cause is eliminated. In all situations, the restorative preparations have to follow the principles of minimally invasive treatment.