5 resultados para Pathophysiological Role
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE OF REVIEW: Sodium/hydrogen exchangers (NHEs) are a large family of transport proteins catalyzing the exchange of cations for protons across lipid bilayer membranes. Several isoforms are expressed in β cells of the endocrine pancreas, including the recently discovered and poorly characterized isoform NHA2. This review will summarize advances in our understanding of the roles of NHEs in the regulation of insulin secretion in β cells. RECENT FINDINGS: Plasmalemmal full-length NHE1 defends β cells from intracellular acidification, but has no role in stimulus-secretion coupling and is not causally involved in glucose-induced alkalinization of the β cell. The function of a shorter NHE1 splice variant, which localizes to insulin-containing large dense core vesicles, remains currently unknown. In contrast, in-vitro and in-vivo studies indicate that the NHA2 isoform is required for insulin secretion and clathrin-mediated endocytosis in β cells. SUMMARY: Recent data highlight the importance of NHEs in the regulation of cellular pH, clathrin-mediated endocytosis and insulin secretion in β cells. Based on these studies, a pathophysiological role of NHEs in human disorders of the endocrine pancreas seems likely and should be investigated.
Resumo:
There exists an association between pathologic events occurring during early life and the development of cardiovascular disease in adulthood. For example, transient perinatal hypoxemia predisposes to exaggerated hypoxic pulmonary hypertension and preeclampsia predisposes the offspring to pulmonary and systemic endothelial dysfunction later in life. The latter finding offers a scientific basis for observations demonstrating an increased risk for premature cardiovascular morbidity in this population. Very recently, we showed that offspring of assisted reproductive technologies also display generalized vascular dysfunction and early arteriosclerosis. Studies in animal models have provided evidence that oxidative stress and/or epigenetic alterations play an important pathophysiological role in the fetal programming of cardiovascular disease.
Resumo:
PURPOSE: To test the hypothesis that the extension of areas with increased fundus autofluorescence (FAF) outside atrophic patches correlates with the rate of spread of geographic atrophy (GA) over time in eyes with age-related macular degeneration (AMD). METHODS: The database of the multicenter longitudinal natural history Fundus Autofluorescence in AMD (FAM) Study was reviewed for patients with GA recruited through the end of August 2003, with follow-up examinations within at least 1 year. Only eyes with sufficient image quality and with diffuse patterns of increased FAF surrounding atrophy were chosen. In standardized digital FAF images (excitation, 488 nm; emission, >500 nm), total size and spread of GA was measured. The convex hull (CH) of increased FAF as the minimum polygon encompassing the entire area of increased FAF surrounding the central atrophic patches was quantified at baseline. Statistical analysis was performed with the Spearman's rank correlation coefficient (rho). RESULTS: Thirty-nine eyes of 32 patients were included (median age, 75.0 years; interquartile range [IQR], 67.8-78.9); median follow-up, 1.87 years; IQR, 1.43-3.37). At baseline, the median total size of atrophy was 7.04 mm2 (IQR, 4.20-9.88). The median size of the CH was 21.47 mm2 (IQR, 15.19-28.26). The median rate of GA progression was 1.72 mm2 per year (IQR, 1.10-2.83). The area of increased FAF around the atrophy (difference between the CH and the total GA size at baseline) showed a positive correlation with GA enlargement over time (rho=0.60; P=0.0002). CONCLUSIONS: FAF characteristics that are not identified by fundus photography or fluorescein angiography may serve as a prognostic determinant in advanced atrophic AMD. As the FAF signal originates from lipofuscin (LF) in postmitotic RPE cells and since increased FAF indicates excessive LF accumulation, these findings would underscore the pathophysiological role of RPE-LF in AMD pathogenesis.
Resumo:
PURPOSE. To evaluate the role of fellow eye status in determining progression of geographic atrophy (GA) in patients with age-related macular degeneration (AMD). METHODS. A total of 300 eyes with GA of 193 patients from the prospective, longitudinal, natural history FAM Study were classified into three groups according to the AMD manifestation in the fellow eye at baseline examination: (1) bilateral GA, (2) early/intermediate AMD, and (3) exudative AMD. GA areas were quantified based on fundus autofluorescence images using a semiautomated image-processing method, and progression rates (PR) were estimated using two-level, linear, mixed-effects models. RESULTS. Crude GA-PR in the bilateral GA group (mean, 1.64 mm(2)/y; 95% CI, 1.478-1.803) was significantly higher than in the fellow eye early/intermediate group (0.74 mm(2)/y, 0.146-1.342). Although there was a significant difference in baseline GA size (P = 0.0013, t-test), and there was a significant increase in GA-PR by 0.11 mm(2)/y (0.05-0.17) per 1 disc area (DA; 2.54 mm(2)), an additional mean change of -0.79 (-1.43 to -0.15) was given to the PR beside the effect of baseline GA size. However, this difference was only significant when GA size was ?1 DA at baseline with a GA-PR of 1.70 mm(2)/y (1.54-1.85) in the bilateral and 0.95 mm(2)/y (0.37-1.54) in the early/intermediate group. There was no significant difference in PR compared with that in the fellow eye exudative group. CONCLUSIONS. The results indicate that the AMD manifestation of the fellow eye at baseline serves as an indicator for disease progression in eyes with GA ? 1 DA. Predictive characteristics not only contribute to the understanding of pathophysiological mechanisms, but also are useful for the design of future interventional trials in GA patients.
Resumo:
Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs) of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.